Display Method:
Review
Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches
Yi-Jun Zhang, Zhao-Fei Yu, Jian. K. Liu, Tie-Jun Huang
doi: 10.1007/s11633-022-1335-2
Abstract PDF SpringerLink
Abstract:
Vision plays a peculiar role in intelligence. Visual information, forming a large part of the sensory information, is fed into the human brain to formulate various types of cognition and behaviours that make humans become intelligent agents. Recent advances have led to the development of brain-inspired algorithms and models for machine vision. One of the key components of these methods is the utilization of the computational principles underlying biological neurons. Additionally, advanced experimental neuroscience techniques have generated different types of neural signals that carry essential visual information. Thus, there is a high demand for mapping out functional models for reading out visual information from neural signals. Here, we briefly review recent progress on this issue with a focus on how machine learning techniques can help in the development of models for contending various types of neural signals, from fine-scale neural spikes and single-cell calcium imaging to coarse-scale electroencephalography (EEG) and functional magnetic resonance imaging recordings of brain signals.
Research Article
Exploring the Brain-like Properties of Deep Neural Networks: A Neural Encoding Perspective
Qiongyi Zhou, Changde Du, Huiguang He
doi: 10.1007/s11633-022-1348-x
Abstract PDF SpringerLink
Abstract:
Nowadays, deep neural networks (DNNs) have been equipped with powerful representation capabilities. The deep convolutional neural networks (CNNs) that draw inspiration from the visual processing mechanism of the primate early visual cortex have outperformed humans on object categorization and have been found to possess many brain-like properties. Recently, vision transformers (ViTs) have been striking paradigms of DNNs and have achieved remarkable improvements on many vision tasks compared to CNNs. It is natural to ask how the brain-like properties of ViTs are. Beyond the model paradigm, we are also interested in the effects of factors, such as model size, multimodality, and temporality, on the ability of networks to model the human visual pathway, especially when considering that existing research has been limited to CNNs. In this paper, we systematically evaluate the brain-like properties of 30 kinds of computer vision models varying from CNNs and ViTs to their hybrids from the perspective of explaining brain activities of the human visual cortex triggered by dynamic stimuli. Experiments on two neural datasets demonstrate that neither CNN nor transformer is the optimal model paradigm for modelling the human visual pathway. ViTs reveal hierarchical correspondences to the visual pathway as CNNs do. Moreover, we find that multi-modal and temporal networks can better explain the neural activities of large parts of the visual cortex, whereas a larger model size is not a sufficient condition for bridging the gap between human vision and artificial networks. Our study sheds light on the design principles for more brain-like networks. The code is available at https://github.com/QYiZhou/LWNeuralEncoding.
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
Cheng-Cheng Ma, Bao-Yuan Wu, Yan-Bo Fan, Yong Zhang, Zhi-Feng Li
doi: 10.1007/s11633-022-1328-1
Abstract PDF SpringerLink
Abstract:
Adversarial example has been well known as a serious threat to deep neural networks (DNNs). In this work, we study the detection of adversarial examples based on the assumption that the output and internal responses of one DNN model for both adversarial and benign examples follow the generalized Gaussian distribution (GGD) but with different parameters (i.e., shape factor, mean, and variance). GGD is a general distribution family that covers many popular distributions (e.g., Laplacian, Gaussian, or uniform). Therefore, it is more likely to approximate the intrinsic distributions of internal responses than any specific distribution. Besides, since the shape factor is more robust to different databases rather than the other two parameters, we propose to construct discriminative features via the shape factor for adversarial detection, employing the magnitude of Benford-Fourier (MBF) coefficients, which can be easily estimated using responses. Finally, a support vector machine is trained as an adversarial detector leveraging the MBF features. Extensive experiments in terms of image classification demonstrate that the proposed detector is much more effective and robust in detecting adversarial examples of different crafting methods and sources compared to state-of-the-art adversarial detection methods.
Display Method:
Review
Facial-sketch Synthesis: A New Challenge
Deng-Ping Fan, Ziling Huang, Peng Zheng, Hong Liu, Xuebin Qin, Luc Van Gool
2022,  vol. 19,  no. 4, pp. 257-287,  doi: 10.1007/s11633-022-1349-9
Abstract PDF SpringerLink
Abstract:
This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high cost of obtaining hand-drawn sketch datasets, there is a lack of a complete benchmark for assessing the development of FSS algorithms over the last decade. We first introduce a high-quality dataset for FSS, named FS2K, which consists of 2 104 image-sketch pairs spanning three types of sketch styles, image backgrounds, lighting conditions, skin colors, and facial attributes. FS2K differs from previous FSS datasets in difficulty, diversity, and scalability and should thus facilitate the progress of FSS research. Second, we present the largest-scale FSS investigation by reviewing 89 classic methods, including 25 handcrafted feature-based facial-sketch synthesis approaches, 29 general translation methods, and 35 image-to-sketch approaches. In addition, we elaborate comprehensive experiments on the existing 19 cutting-edge models. Third, we present a simple baseline for FSS, named FSGAN. With only two straightforward components, i.e., facial-aware masking and style-vector expansion, our FSGAN surpasses the performance of all previous state-of-the-art models on the proposed FS2K dataset by a large margin. Finally, we conclude with lessons learned over the past years and point out several unsolved challenges. Our code is available at https://github.com/DengPingFan/FSGAN.
From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey
Dandan Zhang, Weiyong Si, Wen Fan, Yuan Guan, Chenguang Yang
2022,  vol. 19,  no. 4, pp. 288-306,  doi: 10.1007/s11633-022-1332-5
Abstract PDF SpringerLink
Abstract:
Robot-assisted microsurgery (RAMS) has many benefits compared to traditional microsurgery. Microsurgical platforms with advanced control strategies, high-quality micro-imaging modalities and micro-sensing systems are worth developing to further enhance the clinical outcomes of RAMS. Within only a few decades, microsurgical robotics has evolved into a rapidly developing research field with increasing attention all over the world. Despite the appreciated benefits, significant challenges remain to be solved. In this review paper, the emerging concepts and achievements of RAMS will be presented. We introduce the development tendency of RAMS from teleoperation to autonomous systems. We highlight the upcoming new research opportunities that require joint efforts from both clinicians and engineers to pursue further outcomes for RAMS in years to come.
Research Article
Image De-occlusion via Event-enhanced Multi-modal Fusion Hybrid Network
Si-Qi Li, Yue Gao, Qiong-Hai Dai
2022,  vol. 19,  no. 4, pp. 307-318,  doi: 10.1007/s11633-022-1350-3
Abstract PDF SpringerLink
Abstract:
Seeing through dense occlusions and reconstructing scene images is an important but challenging task. Traditional frame-based image de-occlusion methods may lead to fatal errors when facing extremely dense occlusions due to the lack of valid information available from the limited input occluded frames. Event cameras are bio-inspired vision sensors that record the brightness changes at each pixel asynchronously with high temporal resolution. However, synthesizing images solely from event streams is ill-posed since only the brightness changes are recorded in the event stream, and the initial brightness is unknown. In this paper, we propose an event-enhanced multi-modal fusion hybrid network for image de-occlusion, which uses event streams to provide complete scene information and frames to provide color and texture information. An event stream encoder based on the spiking neural network (SNN) is proposed to encode and denoise the event stream efficiently. A comparison loss is proposed to generate clearer results. Experimental results on a large-scale event-based and frame-based image de-occlusion dataset demonstrate that our proposed method achieves state-of-the-art performance.
A Weighted Average Consensus Approach for Decentralized Federated Learning
Alessandro Giuseppi, Sabato Manfredi, Antonio Pietrabissa
2022,  vol. 19,  no. 4, pp. 319-330,  doi: 10.1007/s11633-022-1338-z
Abstract PDF SpringerLink
Abstract:
Federated learning (FedL) is a machine learning (ML) technique utilized to train deep neural networks (DeepNNs) in a distributed way without the need to share data among the federated training clients. FedL was proposed for edge computing and Internet of things (IoT) tasks in which a centralized server was responsible for coordinating and governing the training process. To remove the design limitation implied by the centralized entity, this work proposes two different solutions to decentralize existing FedL algorithms, enabling the application of FedL on networks with arbitrary communication topologies, and thus extending the domain of application of FedL to more complex scenarios and new tasks. Of the two proposed algorithms, one, called FedLCon, is developed based on results from discrete-time weighted average consensus theory and is able to reconstruct the performances of the standard centralized FedL solutions, as also shown by the reported validation tests.
A Novel Attention-based Global and Local Information Fusion Neural Network for Group Recommendation
Song Zhang, Nan Zheng, Dan-Li Wang
2022,  vol. 19,  no. 4, pp. 331-346,  doi: 10.1007/s11633-022-1336-1
Abstract PDF SpringerLink
Abstract:
Due to the popularity of group activities in social media, group recommendation becomes increasingly significant. It aims to pursue a list of preferred items for a target group. Most deep learning-based methods on group recommendation have focused on learning group representations from single interaction between groups and users. However, these methods may suffer from data sparsity problem. Except for the interaction between groups and users, there also exist other interactions that may enrich group representation, such as the interaction between groups and items. Such interactions, which take place in the range of a group, form a local view of a certain group. In addition to local information, groups with common interests may also show similar tastes on items. Therefore, group representation can be conducted according to the similarity among groups, which forms a global view of a certain group. In this paper, we propose a novel global and local information fusion neural network (GLIF) model for group recommendation. In GLIF, an attentive neural network (ANN) activates rich interactions among groups, users and items with respect to forming a group′s local representation. Moreover, our model also leverages ANN to obtain a group′s global representation based on the similarity among different groups. Then, it fuses global and local representations based on attention mechanism to form a group′s comprehensive representation. Finally, group recommendation is conducted under neural collaborative filtering (NCF) framework. Extensive experiments on three public datasets demonstrate its superiority over the state-of-the-art methods for group recommendation.
Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning: A Survey
De-Rong Liu, Hong-Liang, Li Ding Wang
2015,  vol. 12,  no. 3, pp. 229-242,  doi: 10.1007/s11633-015-0893-y
Abstract PDF SpringerLink
Second-order Sliding Mode Approaches for the Control of a Class of Underactuated Systems
Sonia Mahjoub, Faiçal Mnif, Nabil Derbel
2015,  vol. 12,  no. 2, pp. 134-141,  doi: 10.1007/s11633-015-0880-3
Abstract PDF SpringerLink
Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection
Sunil Nilkanth Pawar, Rajankumar Sadashivrao Bichkar
2015,  vol. 12,  no. 3, pp. 337-342,  doi: 10.1007/s11633-014-0870-x
Abstract PDF SpringerLink
Recent Progress in Networked Control Systems-A Survey
Yuan-Qing Xia, Yu-Long Gao, Li-Ping Yan, Meng-Yin Fu
2015,  vol. 12,  no. 4, pp. 343-367,  doi: 10.1007/s11633-015-0894-x
Abstract PDF SpringerLink
Grey Qualitative Modeling and Control Method for Subjective Uncertain Systems
Peng Wang, Shu-Jie Li, Yan Lv, Zong-Hai Chen
2015,  vol. 12,  no. 1, pp. 70-76,  doi: 10.1007/s11633-014-0820-7
Abstract PDF SpringerLink
Cooperative Formation Control of Autonomous Underwater Vehicles: An Overview
Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati
2016,  vol. 13,  no. 3, pp. 199-225,  doi: 10.1007/s11633-016-1004-4
Abstract PDF SpringerLink
A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System
Kayode Owa, Sanjay Sharma, Robert Sutton
2015,  vol. 12,  no. 2, pp. 156-170,  doi: 10.1007/s11633-014-0825-2
Abstract PDF SpringerLink
An Unsupervised Feature Selection Algorithm with Feature Ranking for Maximizing Performance of the Classifiers
Danasingh Asir Antony Gnana Singh, Subramanian Appavu Alias Balamurugan, Epiphany Jebamalar Leavline
2015,  vol. 12,  no. 5, pp. 511-517,  doi: 10.1007/s11633-014-0859-5
Abstract PDF SpringerLink
Bounded Real Lemmas for Fractional Order Systems
Shu Liang, Yi-Heng Wei, Jin-Wen Pan, Qing Gao, Yong Wang
2015,  vol. 12,  no. 2, pp. 192-198,  doi: 10.1007/s11633-014-0868-4
Abstract PDF SpringerLink
Sliding Mode and PI Controllers for Uncertain Flexible Joint Manipulator
Lilia Zouari, Hafedh Abid, Mohamed Abid
2015,  vol. 12,  no. 2, pp. 117-124,  doi: 10.1007/s11633-015-0878-x
Abstract PDF SpringerLink
Robust Face Recognition via Low-rank Sparse Representation-based Classification
Hai-Shun Du, Qing-Pu Hu, Dian-Feng Qiao, Ioannis Pitas
2015,  vol. 12,  no. 6, pp. 579-587,  doi: 10.1007/s11633-015-0901-2
Abstract PDF SpringerLink
Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development
Elias C. Eze, Si-Jing Zhang, En-Jie Liu, Joy C. Eze
2016,  vol. 13,  no. 1, pp. 1-18,  doi: 10.1007/s11633-015-0913-y
Abstract PDF SpringerLink
Distributed Control of Chemical Process Networks
Michael J. Tippett, Jie Bao
2015,  vol. 12,  no. 4, pp. 368-381,  doi: 10.1007/s11633-015-0895-9
Abstract PDF SpringerLink
Extracting Parameters of OFET Before and After Threshold Voltage Using Genetic Algorithms
Imad Benacer, Zohir Dibi
2016,  vol. 13,  no. 4, pp. 382-391,  doi: 10.1007/s11633-015-0918-6
Abstract PDF SpringerLink
Appropriate Sub-band Selection in Wavelet Packet Decomposition for Automated Glaucoma Diagnoses
Chandrasekaran Raja, Narayanan Gangatharan
2015,  vol. 12,  no. 4, pp. 393-401,  doi: 10.1007/s11633-014-0858-6
Abstract PDF SpringerLink
Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization
Esmat Sadat Alaviyan Shahri, Saeed Balochian
2015,  vol. 12,  no. 4, pp. 440-447,  doi: 10.1007/s11633-014-0856-8
Abstract PDF SpringerLink
Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking
David H. Owens, Chris T. Freeman, Bing Chu
2015,  vol. 12,  no. 3, pp. 243-253,  doi: 10.1007/s11633-015-0888-8
Abstract PDF SpringerLink
Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer
Cai-Xue Chen, Yun-Xiang Xie, Yong-Hong Lan
2015,  vol. 12,  no. 2, pp. 149-155,  doi: 10.1007/s11633-015-0881-2
Abstract PDF SpringerLink
Flexible Strip Supercapacitors for Future Energy Storage
Rui-Rong Zhang, Yan-Meng Xu, David Harrison, John Fyson, Fu-Lian Qiu, Darren Southee
2015,  vol. 12,  no. 1, pp. 43-49,  doi: 10.1007/s11633-014-0866-6
Abstract PDF SpringerLink
A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems
Wei Zhou, Miao Yu, De-Qing Huang
2015,  vol. 12,  no. 3, pp. 330-336,  doi: 10.1007/s11633-015-0886-x
Abstract PDF SpringerLink
Finite-time Control for a Class of Networked Control Systems with Short Time-varying Delays and Sampling Jitter
Chang-Chun Hua, Shao-Chong Yu, Xin-Ping Guan
2015,  vol. 12,  no. 4, pp. 448-454,  doi: 10.1007/s11633-014-0849-7
Abstract PDF SpringerLink