Citation:  GuoYin Wang, DongDong Cheng, DeYou Xia, HaiHuan Jiang. Swarm Intelligence Research: From Bioinspired Singlepopulation Swarm Intelligence to Humanmachine Hybrid Swarm Intelligence. Machine Intelligence Research, vol. 20, no. 1, pp.121144, 2023. https://doi.org/10.1007/s1163302213677 
[1] 
W. Zhang, H. Mei. A constructive model for collective intelligence. National Science Review, vol. 7, no. 8, pp. 1273–1277, 2020. DOI: 10.1093/nsr/nwaa092.

[2] 
Y. Jiang, W. Zhang, P. Wang, X. Y. Zhang, H. Mei. Knowledge graph construction method via internetbased collective intelligence. Journal of Software, vol. 33, no. 7, pp. 2646–2666, 2022. DOI: 10.13328/j.cnki.jos.006313. (in Chinese)

[3] 
B. Shen, W. Zhang, H. Y. Zhao, Z. Jin, Y. H. Wu. Solving pictorial jigsaw puzzles via Internetbased collective intelligence. SCIENTIA SINICA Informationis, vol. 51, no. 2, pp. 206–230, 2021. DOI: 10.1360/SSI20190150. (in Chinese)

[4] 
W. Zhang, H. Mei. Software development based on collective intelligence on the Internet: Feasibility, stateofthepractice, and challenges. SCIENTIA SINICA Informationis, vol. 47, no. 12, pp. 1601–1622, 2017. DOI: 10.1360/N11201700117. (in Chinese)

[5] 
J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, Ann Arbor, USA: University of Michigan Press, 1975.

[6] 
R. Storn, K. Price. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. DOI: 10.1023/A:1008202821328.

[7] 
J. Y. Li, Z. H. Zhan, J. Zhang. Evolutionary computation for expensive optimization: A survey. Machine Intelligence Research, vol. 19, no. 1, pp. 3–23, 2022. DOI: 10.1007/s1163302213174.

[8] 
Q. F. Ding, X. Y. Yin. Research survey of differential evolution algorithms. CAAI Transactions on Intelligent Systems, vol. 12, no. 4, pp. 431–442, 2017. DOI: 10.11992/tis.201605015.

[9] 
G. Beni, J. Wang. Swarm intelligence in cellular robotic systems. In Proceedings of NATO Advanced Workshop on Robots and Biological Systems: Towards a new Bionics, Springer, Toscana, Italy, pp. 703–712, 1993. DOI: 10.1007/9783642580697_38.

[10] 
A. Colorni, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies. In Proceedings of the 1st European Conference on Artificial Life, Paris, France, pp. 134–142, 1991.

[11] 
J. Kennedy, R. Eberhart. Particle swarm optimization. In Proceedings of EEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948, 1995. DOI: 10.1109/ICNN.1995.488968.

[12] 
E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems, New York, USA: Oxford University Press, 1999.

[13] 
J. Kennedy, R. C. Eberhart, Y. H. Shi. Swarm Intelligence, San Francisco, USA: Morgan Kaufmann Publishers, pp. 5–12, 2001.

[14] 
H. P. Ma, S. G. Shen, M. Yu, Z. L. Yang, M. R. Fei, H. Y. Zhou. Multipopulation techniques in nature inspired optimization algorithms: A comprehensive survey. Swarm and Evolutionary Computation, vol. 44, pp. 365–387, 2019. DOI: 10.1016/j.swevo.2018.04.011.

[15] 
S. Mirjalili, S. M. Mirjalili, A. Lewis. Grey wolf optimizer. Advances in Engineering Software, vol. 69, pp. 46–61, 2014. DOI: 10.1016/j.advengsoft.2013.12.007.

[16] 
F. Fausto, E. Cuevas, A. Valdivia, A. González. A global optimization algorithm inspired in the behavior of selfish herds. BioSystems, vol. 160, pp. 39–55, 2017. DOI: 10.1016/j.biosystems.2017.07.010.

[17] 
J. C. Sun, J. L. Wang, J. Chen, G. R. Guo. Cooperative communication based on swarm intelligence: Vision, model, and key technology. SCIENTIA SINICA Informationis, vol. 50, no. 3, pp. 307–317, 2020. DOI: 10.1360/SSI20190186.

[18] 
X. Yao, G. L. Chen, H. M, X u, Y. Liu. A survey of evolutionary algorithms. Chinese Journal of Computers, vol. 18, no. 9, pp. 694–706, 1995. (in Chinese)

[19] 
S. Mirjalili, J. S. Dong, A. S. Sadiq, H. Faris. Genetic algorithm: Theory, literature review, and application in image reconstruction. Natureinspired Optimizers, S. Mirjalili, J. S. Dong, A. Lewis, Eds., Cham, Germany: Springer, pp. 69–85, 2020. DOI: 10.1007/9783030121273_5.

[20] 
H. Ishibuchi, T. Yamamoto. Fuzzy rule selection by multiobjective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, vol. 141, no. 1, pp. 59–88, 2004. DOI: 10.1016/S01650114(03)001143.

[21] 
G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms, ACM, San Francisco, USA, pp. 2–9, 1989. DOI: 10.5555/645512.657265.

[22] 
R. Kumar, Jyotishree. Blending roulette wheel selection & rank selection in genetic algorithms. International Journal of Machine Learning and Computing, vol. 2, no. 4, pp. 365–370, 2012.

[23] 
J. Grefenstette, R. Gopal, B. J. Rosmaita, D. V. Gucht. Genetic algorithms for the traveling salesman problem. In Proceedings of the 1st International Conference on Genetic Algorithms, CarnegieMellon University, Pittsburgh, USA, pp. 160–168, 1985.

[24] 
X. B. Hu, E. Di Paolo. An efficient genetic algorithm with uniform crossover for the multiobjective airport gate assignment problem. Multiobjective Memetic Algorithms, C. K. Goh, Y. S. Ong, K. C. Tan, Eds., Berlin, Germany: Springer, pp. 71–89, 2009. DOI: 10.1007/9783540880516_4.

[25] 
E. Semenkin, M. Semenkina. Selfconfiguring genetic algorithm with modified uniform crossover operator. In Proceedings of the 3rd International Conference on Advances in Swarm Intelligence, Springer, Shenzhen, China, pp. 414–421, 2012. DOI: 10.1007/9783642309762_50.

[26] 
M. L. Mauldin. Maintaining diversity in genetic search. In Proceedings of the 4th AAAI Conference on Artificial Intelligence, Austin, USA, pp. 247–250, 1984. DOI: 10.5555/2886937.2886983.

[27] 
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. DOI: 10.1109/4235.996017.

[28] 
K. Deb, H. Jain. An evolutionary manyobjective optimization algorithm using referencepointbased nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014. DOI: 10.1109/TEVC.2013.2281535.

[29] 
N. Pham, A. Malinowski, T. Bartczak. Comparative study of derivative free optimization algorithms. IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 592–600, 2011. DOI: 10.1109/TII.2011.2166799.

[30] 
Y. P. Zhou, X. S. Gu. Development of differential evolution algorithm. Control and Instruments in Chemical Industry, vol. 34, no. 3, pp. 1–6, 2007. DOI: 10.3969/j.issn.10003932.2007.03.001. (in Chinese)

[31] 
K. H. Han, J. H. Kim. Quantuminspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 580–593, 2002. DOI: 10.1109/TEVC.2002.804320.

[32] 
G. W. Zhang, R. He, Y. Liu, D. Y. Li. G. S. Chen. An evolutionary algorithm based on cloud model. Chinese Journal of Computers, vol. 31, no. 7, pp. 1082–1091, 2008. DOI: 10.3321/j.issn:02544164.2008.07.003. (in Chinese)

[33] 
J. Y. Li, Z. H. Zhan, K. C. Tan, J. Zhang. A metaknowledge transferbased differential evolution for multitask optimization. IEEE Transactions on Evolutionary Computation, vol. 26, no. 4, pp. 719–734, 2022. DOI: 10.1109/TEVC.2021.3131236.

[34] 
K. R. Opara, J. Arabas. Differential evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation, vol. 44, pp. 546–558, 2019. DOI: 10.1016/j.swevo.2018.06.010.

[35] 
J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer. Selfadapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. DOI: 10.1109/TEVC.2006.872133.

[36] 
Q. Q. Fan, W. L. Wang, X. F. Yan. Differential evolution algorithm with strategy adaptation and knowledgebased control parameters. Artificial Intelligence Review, vol. 51, no. 2, pp. 219–253, 2019. DOI: 10.1007/s1046201795626.

[37] 
F. Q. Zhao, L. X. Zhao, L. Wang, H. B. Song. An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion. Expert Systems with Applications, vol. 160, Article number 113678, 2020. DOI: 10.1016/j.eswa.2020.113678.

[38] 
Z. Y. Meng, J. S. Pan, K. K. Tseng. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowledgebased Systems, vol. 168, pp. 80–99, 2019. DOI: 10.1016/j.knosys.2019.01.006.

[39] 
S. M. Guo, C. C. Yang. Enhancing differential evolution utilizing eigenvectorbased crossover operator. IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 31–49, 2015. DOI: 10.1109/TEVC.2013.2297160.

[40] 
Y. Wang, Z. X. Cai, Q. F. Zhang. Enhancing the search ability of differential evolution through orthogonal crossover. Information Sciences, vol. 185, no. 1, pp. 153–177, 2012. DOI: 10.1016/j.ins.2011.09.001.

[41] 
W. Y. Gong, Z. H. Cai. Differential evolution with rankingbased mutation operators. IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 2066–2081, 2013. DOI: 10.1109/TCYB.2013.2239988.

[42] 
S. Das, A. Abraham, U. K. Chakraborty, A. Konar. Differential evolution using a neighborhoodbased mutation operator. IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 526–553, 2009. DOI: 10.1109/TEVC.2008.2009457.

[43] 
R. A. Sarker, S. M. Elsayed, T. Ray. Differential evolution with dynamic parameters selection for optimization problems. IEEE Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 689–707, 2014. DOI: 10.1109/TEVC.2013.2281528.

[44] 
X. F. Liu, Z. H. Zhan, Y. Lin, W. N. Chen, Y. J. Gong, T. L. Gu, H. Q. Yuan, J. Zhang. Historical and heuristicbased adaptive differential evolution. IEEE Transactions on Systems,Man,and Cybernetics:Systems, vol. 49, no. 12, pp. 2623–2635, 2019. DOI: 10.1109/TSMC.2018.2855155.

[45] 
Z. H. Zhan, Z. J. Wang, H. Jin, J. Zhang. Adaptive distributed differential evolution. IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4633–4647, 2020. DOI: 10.1109/TCYB.2019.2944873.

[46] 
Z. G. Chen, Z. H. Zhan, H. Wang, J. Zhang. Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, vol. 24, no. 4, pp. 708–719, 2020. DOI: 10.1109/TEVC.2019.2944180.

[47] 
X. S. Yang. A new metaheuristic batinspired algorithm. Nature Inspired Cooperative Strategies for Optimization, J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor, Eds., Berlin, Germany: Springer, pp. 65–74, 2010. DOI: 10.1007/9783642125386_6.

[48] 
W. T. Pan. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowledgebased Systems, vol. 26, pp. 69–74, 2012. DOI: 10.1016/j.knosys.2011.07.001.

[49] 
H. B. Duan, P. X. Qiao. Pigeoninspired optimization: A new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, vol. 7, no. 1, pp. 24–37, 2014. DOI: 10.1108/IJICC0220140005.

[50] 
A. Prakasam, N. Savarimuthu. Metaheuristic algorithms and probabilistic behaviour: A comprehensive analysis of ant colony optimization and its variants. Artificial Intelligence Review, vol. 45, no. 1, pp. 97–130, 2016. DOI: 10.1007/s104620159441y.

[51] 
X. L. Zhang, X. F. Chen, Z. J. He. An ACObased algorithm for parameter optimization of support vector machines. Expert Systems with Applications, vol. 37, no. 9, pp. 6618–6628, 2010. DOI: 10.1016/j.eswa.2010.03.067.

[52] 
L. C. Lu, T. W. Yue. Missionoriented antteam ACO for min–max MTSP. Applied Soft Computing, vol. 76, pp. 436–444, 2019. DOI: 10.1016/j.asoc.2018.11.048.

[53] 
L. Shi, Z. H. Zhan, D. Liang, J. Zhang. Memorybased ant colony system approach for multisource data associated dynamic electric vehicle dispatch optimization. IEEE Transactions on Intelligent Transportation Systems, to be published. DOI: 10.1109/TITS.2022.3150471.

[54] 
A. Ratnaweera, S. K. Halgamuge, H. C. Watson. Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficients. IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004. DOI: 10.1109/TEVC.2004.826071.

[55] 
S. Javed, K. Ishaque, S. A. Siddique, Z. Salam. A simple yet fully adaptive PSO algorithm for global peak tracking of photovoltaic array under partial shading conditions. IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5922–5930, 2022. DOI: 10.1109/TIE.2021.3091921.

[56] 
W. Deng, J. J. Xu, H. M. Zhao, Y. J. Song. A novel gate resource allocation method using improved PSObased QEA. IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 1737–1745, 2022. DOI: 10.1109/TITS.2020.3025796.

[57] 
M. R. Tanweer, S. Suresh, N. Sundararajan. Self regulating particle swarm optimization algorithm. Information Sciences, vol. 294, pp. 182–202, 2015. DOI: 10.1016/j.ins.2014.09.053.

[58] 
R. Cheng, Y. C. Jin. A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences, vol. 291, pp. 43–60, 2015. DOI: 10.1016/j.ins.2014.08.039.

[59] 
X. W. Xia, L. Gui, F. Yu, H. R. Wu, B. Wei, Y. L. Zhang, Z. H. Zhan. Triple archives particle swarm optimization. IEEE Transactions on Cybernetics, vol. 50, no. 12, pp. 4862–4875, 2020. DOI: 10.1109/TCYB.2019.2943928.

[60] 
J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong, J. Zhang. Generationlevel parallelism for evolutionary computation: A pipelinebased parallel particle swarm optimization. IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4848–4859, 2021. DOI: 10.1109/TCYB.2020.3028070.

[61] 
T. Blackwell, J. Kennedy. Impact of communication topology in particle swarm optimization. IEEE Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 689–702, 2019. DOI: 10.1109/TEVC.2018.2880894.

[62] 
A. P. Lin, W. Sun, H. S. Yu, G. H. Wu, H. W. Tang. Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm and Evolutionary Computation, vol. 44, pp. 571–583, 2019. DOI: 10.1016/j.swevo.2018.07.002.

[63] 
J. R. Jian, Z. G. Chen, Z. H. Zhan, J. Zhang. Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for largescale optimization. IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 779–793, 2021. DOI: 10.1109/TEVC.2021.3065659.

[64] 
C. Gan, W. H. Cao, M. Wu, X. Chen. A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Systems with Applications, vol. 104, pp. 202–212, 2018. DOI: 10.1016/j.eswa.2018.03.015.

[65] 
M. R. Chen, Y. Y. Huang, G. Q. Zeng, K. D. Lu, L. Q. Yang. An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Systems with Applications, vol. 175, Article number 114812, 2021. DOI: 10.1016/j.eswa.2021.114812.

[66] 
Q. Liu, L. Wu, W. S. Xiao, F. D. Wang, L. C. Zhang. A novel hybrid bat algorithm for solving continuous optimization problems. Applied Soft Computing, vol. 73, pp. 67–82, 2018. DOI: 10.1016/j.asoc.2018.08.012.

[67] 
Z. H. Cui, F. X. Li, W. S. Zhang. Bat algorithm with principal component analysis. International Journal of Machine Learning and Cybernetics, vol. 10, no. 3, pp. 603–622, 2019. DOI: 10.1007/s1304201808884.

[68] 
G. Hu, Z. Q. Xu, G. R. Wang, B. Zeng, Y. B. Liu, Y. Lei. Forecasting energy consumption of longdistance oil products pipeline based on improved fruit fly optimization algorithm and support vector regression. Energy, vol. 224, Article number 120153, 2021. DOI: 10.1016/j.energy.2021.120153.

[69] 
L. Wu, Q. Liu, X. Tian, J. X. Zhang, W. S. Xiao. A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowledgebased Systems, vol. 144, pp. 153–173, 2018. DOI: 10.1016/j.knosys.2017.12.031.

[70] 
X. F. Yuan, X. S. Dai, J. Y. Zhao, Q. He. On a novel multiswarm fruit fly optimization algorithm and its application. Applied Mathematics and Computation, vol. 233, pp. 260–271, 2014. DOI: 10.1016/j.amc.2014.02.005.

[71] 
H. B. Duan, H. X. Qiu. Advancements in pigeoninspired optimization and its variants. Science China Information Sciences, vol. 62, no. 7, Article number 70201, 2019. DOI: 10.1007/s1143201897529.

[72] 
R. Dou, H. B. Duan. Lévy flight based pigeoninspired optimization for control parameters optimization in automatic carrier landing system. Aerospace Science and Technology, vol. 61, pp. 11–20, 2017. DOI: 10.1016/j.ast.2016.11.012.

[73] 
Z. Y. Yang, H. B. Duan, Y. M. Fan, Y. M. Deng. Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeoninspired optimization. Aerospace Science and Technology, vol. 79, pp. 518–530, 2018. DOI: 10.1016/j.ast.2018.06.013.

[74] 
H. B. Duan, X. H. Wang. Echo state networks with orthogonal pigeoninspired optimization for image restoration. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 11, pp. 2413–2425, 2016. DOI: 10.1109/TNNLS.2015.2479117.

[75] 
X. B. Xu, Y. M. Deng. UAV power componentDC brushless motor design with merging adjacentdisturbances and integrateddispatching pigeoninspired optimization. IEEE Transactions on Magnetics, vol. 54, no. 8, Article number 7402307, 2018.

[76] 
D. F. Zhang, H. B. Duan. Socialclass pigeoninspired optimization and time stamp segmentation for multiUAV cooperative path planning. Neurocomputing, vol. 313, pp. 229–246, 2018. DOI: 10.1016/j.neucom.2018.06.032.

[77] 
Y. Ning, Z. S. Peng, Y. X. Dai, D. Q. Bi, J. Wang. Enhanced particle swarm optimization with multiswarm and multivelocity for optimizing highdimensional problems. Applied Intelligence, vol. 49, no. 2, pp. 335–351, 2019. DOI: 10.1007/s1048901812583.

[78] 
B. Farnad, A. Jafarian, D. Baleanu. A new hybrid algorithm for continuous optimization problem. Applied Mathematical Modelling, vol. 55, pp. 652–673, 2018. DOI: 10.1016/j.apm.2017.10.001.

[79] 
L. P. Wang, M. L. Feng, Q. C. Qiu, M. L. Zhang, F. Y. Qiu. Survey on preferencebased multiobjective evolutionary algorithms. Chinese Journal of Computers, vol. 42, no. 6, pp. 1289–1315, 2019. DOI: 10.11897/SP.J.1016.2019.01289.

[80] 
Z. H. Zhan, L. Shi, K. C. Tan, J. Zhang. A survey on evolutionary computation for complex continuous optimization. Artificial Intelligence Review, vol. 55, no. 1, pp. 59–110, 2022. DOI: 10.1007/s1046202110042y.

[81] 
X. Q. Shi, W. Long, Y. Y. Li, D. S. Deng, Y. L. Wei. Research on the performance of multipopulation genetic algorithms with different complex network structures. Soft Computing, vol. 24, no. 17, pp. 13441–13459, 2020. DOI: 10.1007/s00500020047591.

[82] 
W. Wei, Q. Wang, H. Wang, H. G. Zhang. The feature extraction of nonparametric curves based on niche genetic algorithms and multipopulation competition. Pattern Recognition Letters, vol. 26, no. 10, pp. 1483–1497, 2005. DOI: 10.1016/j.patrec.2004.10.027.

[83] 
Y. X. Shen, G. Y. Wang, C. H. Zeng. Study on the relationship between population diversity and learning parameters in particle swarm optimization. Acta Electronica Sinica, vol. 39, no. 6, pp. 1238–1244, 2011.

[84] 
F. Kılıç, Y. Kaya, S. Yildirim. A novel multi population based particle swarm optimization for feature selection. Knowledgebased Systems, vol. 219, Article number 106894, 2021. DOI: 10.1016/j.knosys.2021.106894.

[85] 
S. K. Fan, J. M. Chang. Dynamic multiswarm particle swarm optimizer using parallel PC cluster systems for global optimization of largescale multimodal functions. Engineering Optimization, vol. 42, no. 5, pp. 431–451, 2010. DOI: 10.1080/03052150903247736.

[86] 
H. Basak, R. Kundu, S. Chakraborty, N. Das. Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Computer Science, vol. 2, no. 5, Article number 369, 2021. DOI: 10.1007/s42979021007412.

[87] 
A. Gupta, Y. S. Ong, L. Feng. Multifactorial evolution: Toward evolutionary multitasking. IEEE Transactions on Evolutionary Computation, vol. 20, no. 3, pp. 343–357, 2016. DOI: 10.1109/TEVC.2015.2458037.

[88] 
A. Gupta, Y. S. Ong, L. Feng, K. C. Tan. Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1652–1665, 2017. DOI: 10.1109/TCYB.2016.2554622.

[89] 
A. Gupta, J. Mańdziuk, Y. S. Ong. Evolutionary multitasking in bilevel optimization. Complex &Intelligent Systems, vol. 1, no. 1–4, pp. 83–95, 2015. DOI: 10.1007/s407470160011y.

[90] 
G. H. Li, Q. Z. Lin, W. F. Gao. Multifactorial optimization via explicit multipopulation evolutionary framework. Information Sciences, vol. 512, pp. 1555–1570, 2020. DOI: 10.1016/j.ins.2019.10.066.

[91] 
K. Chen, B. Xue, M. J. Zhang, F. Y. Zhou. Evolutionary multitasking for feature selection in highdimensional classification via particle swarm optimization. IEEE Transactions on Evolutionary Computation, vol. 26, no. 3, pp. 446–460, 2022. DOI: 10.1109/TEVC.2021.3100056.

[92] 
Z. G. Chen, Z. H. Zhan, Y. Lin, Y. J. Gong, T. L. Gu, F. Zhao, H. Q. Yuan, X. F. Chen, Q. Li, J. Zhang. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach. IEEE Transactions on Cybernetics, vol. 49, no. 8, pp. 2912–2926, 2019. DOI: 10.1109/TCYB.2018.2832640.

[93] 
Z. J. Wang, Z. H. Zhan, W. J. Yu, Y. Lin, J. Zhang, T. L. Gu, J. Zhang. Dynamic group learning distributed particle swarm optimization for largescale optimization and its application in cloud workflow scheduling. IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2715–2729, 2020. DOI: 10.1109/TCYB.2019.2933499.

[94] 
X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, J. Zhang. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for manyobjective optimization. IEEE Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 587–602, 2019. DOI: 10.1109/TEVC.2018.2875430.

[95] 
Z. J. Wang, Z. H. Zhan, S. Kwong, H. Jin, J. Zhang. Adaptive granularity learning distributed particle swarm optimization for largescale optimization. IEEE Transactions on Cybernetics, vol. 51, no. 3, pp. 1175–1188, 2021. DOI: 10.1109/TCYB.2020.2977956.

[96] 
M. A. Potter, K. A. De Jong. A cooperative coevolutionary approach to function optimization. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Springer, Jerusalem, Israel, pp. 249–257, 1994. DOI: 10.1007/3540584846_269.

[97] 
W. Du, L. Tong, T. Yang. Effective resource allocation in cooperative coevolutionary algorithm for largescale fullyseparable problems. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Toronto, Canada, pp. 4198–4203, 2020. DOI: 10.1109/SMC42975.2020.9283410.

[98] 
X. L. Ma, X. D. Li, Q. F. Zhang, K. Tang, Z. P. Liang, W. X. Xie, Z. X. Zhu. A survey on cooperative coevolutionary algorithms. IEEE Transactions on Evolutionary Computation, vol. 23, no. 3, pp. 421–441, 2019. DOI: 10.1109/TEVC.2018.2868770.

[99] 
Z. H. Zhan, X. F. Liu, H. X. Zhang, Z. T. Yu, J. Weng, Y. Li, T. L. Gu, J. Zhang. Cloudde: A heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp. 704–716, 2017. DOI: 10.1109/TPDS.2016.2597826.

[100] 
J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, J. Zhang. Distributed differential evolution with adaptive resource allocation. IEEE Transactions on Cybernetics, to be published. DOI: 10.1109/TCYB.2022.3153964.

[101] 
M. Mavrovouniotis, S. X. Yang, X. Yao. Multicolony ant algorithms for the dynamic travelling salesman problem. In Proceedings of IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, Orlando, USA, pp. 9–16, 2014. DOI: 10.1109/CIDUE.2014.7007861.

[102] 
I. Bailey, J. P. Myatt, A. M. Wilson. Group hunting within the carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behavioral Ecology and Sociobiology, vol. 67, no. 1, pp. 1–17, 2013. DOI: 10.1007/s0026501214233.

[103] 
B. Li, H. S. Deng, J. Wang. Optimal scheduling of microgrid considering the interruptible load shifting based on improved biogeographybased optimization algorithm. Symmetry, vol. 13, no. 9, Article number 1707, 2021. DOI: 10.3390/sym13091707.

[104] 
J. M. Lien, S. Rodriguez, J. P. Malric, N. M. Amato. Shepherding behaviors with multiple shepherds. In Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 34023407, 2005. DOI: 10.1109/ROBOT.2005.1570636.

[105] 
P. G. Keil. Humansheepdog distributed cognitive systems: An analysis of interspecies cognitive scaffolding in a sheepdog trial. Journal of Cognition and Culture, vol. 15, no. 5, pp. 508–529, 2015. DOI: 10.1163/1568537312342163.

[106] 
H. T. Nguyen, T. D. Nguyen, M. Garratt, K. Kasmarik, S. Anavatti, M. Barlow, H. A. Abbass. A deep hierarchical reinforcement learner for aerial shepherding of ground swarms. In Proceedings of the 26th International Conference on Neural Information Processing, Springer, Sydney, Australia, pp. 658–669, 2019. DOI: 10.1007/9783030367084_54.

[107] 
N. K. Long, K. Sammut, D. Sgarioto, M. Garratt, H. A. Abbass. A comprehensive review of shepherding as a bioinspired swarmrobotics guidance approach. IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 4, pp. 523–537, 2020. DOI: 10.1109/TETCI.2020.2992778.

[108] 
D. F. Zhang, J. L. Zhang. Multispecies evolutionary algorithm for wireless visual sensor networks coverage optimization with changeable field of views. Applied Soft Computing, vol. 96, Article number 106680, 2020. DOI: 10.1016/j.asoc.2020.106680.

[109] 
S. Mirjalili, A. Lewis. The Whale Optimization Algorithm. Advances in Engineering Software, vol. 95, pp. 51–67, 2016. DOI: 10.1016/j.advengsoft.2016.01.008.

[110] 
Y. J. Sun, Y. Chen. Multipopulation improved whale optimization algorithm for high dimensional optimization. Applied Soft Computing, vol. 112, Article number 107854, 2021. DOI: 10.1016/j.asoc.2021.107854.

[111] 
Q. Fan, Z. J. Chen, Z. Li, Z. H. Xia, J. Y. Yu, D. Z. Wang. A new improved whale optimization algorithm with joint search mechanisms for highdimensional global optimization problems. Engineering with Computers, vol. 37, no. 3, pp. 1851–1878, 2021. DOI: 10.1007/s00366019009178.

[112] 
S. Chakraborty, A. K. Saha, R. Chakraborty, M. Saha. An enhanced whale optimization algorithm for large scale optimization problems. Knowledgebased Systems, vol. 233, Article number 107543, 2021. DOI: 10.1016/j.knosys.2021.107543.

[113] 
S. Shadravan, H. R. Naji, V. K. Bardsiri. The sailfish optimizer: A novel natureinspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, vol. 80, pp. 20–34, 2019. DOI: 10.1016/j.engappai.2019.01.001.

[114] 
K. Asghari, M. Masdari, F. S. Gharehchopogh, R. Saneifard. A chaotic and hybrid gray wolfwhale algorithm for solving continuous optimization problems. Progress in Artificial Intelligence, vol. 10, no. 3, pp. 349–374, 2021. DOI: 10.1007/s13748021002444.

[115] 
M. Karakoyun, A. Özkis, H. Kodaz. A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multiobjective optimization problems. Applied Soft Computing, vol. 96, Article number 106560, 2020. DOI: 10.1016/j.asoc.2020.106560.

[116] 
P. Dhal, C. Azad. A multiobjective feature selection method using Newton′s law based PSO with GWO. Applied Soft Computing, vol. 107, Article number 107394, 2021. DOI: 10.1016/j.asoc.2021.107394.

[117] 
X. M. Zhang, X. Wang, H. Y. Chen, D. D. Wang, Z. H. Fu. Improved GWO for largescale function optimization and MLP optimization in cancer identification. Neural Computing and Applications, vol. 32, no. 5, pp. 1305–1325, 2020. DOI: 10.1007/s00521019044834.

[118] 
S. K. Nseef, S. Abdullah, A. Turky, G. Kendall. An adaptive multipopulation artificial bee colony algorithm for dynamic optimisation problems. Knowledgebased Systems, vol. 104, pp. 14–23, 2016. DOI: 10.1016/j.knosys.2016.04.005.

[119] 
G. H. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, H. K. Chen. Differential evolution with multipopulation based ensemble of mutation strategies. Information Sciences, vol. 329, pp. 329–345, 2016. DOI: 10.1016/j.ins.2015.09.009.

[120] 
Q. Wang, L. Tan. Optimization algorithm for accurately themeaware task assignment in crowd computing on big data. Journal of Computer Applications, vol. 36, no. 10, pp. 2777–2783, 2016. DOI: 10.11772/j.issn.10019081.2016.10.2777. (in Chinese)

[121] 
W. Li, J. Chen. Review and prospect of cooperative combat of manned/unmanned aerial vehicle hybrid formation. Aerospace Control, vol. 35, no. 3, pp. 90–96, 2017. DOI: 10.16804/j.cnki.issn10063242.2017.03.017. (in Chinese)

[122] 
A. B. Kao, A. M. Berdahl, A. T. Hartnett, M. J. Lutz, J. B. BakColeman, C. C. Ioannou, X. Giam, I. D. Couzin. Counteracting estimation bias and social influence to improve the wisdom of crowds. Journal of the Royal Society Interface, vol. 15, no. 141, Article number 20180130, 2018. DOI: 10.1098/rsif.2018.0130.

[123] 
J. Surowiecki. The Wisdom of Crowds: Why the Many are Smarter than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations, New York, USA: Doubleday, 2004.

[124] 
J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing. How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9020–9025, 2011. DOI: 10.1073/pnas.1008636108.

[125] 
M. S. Lobo, D. Yao. Human Judgement is Heavy Tailed: Empirical Evidence and Implications for the Aggregation of Estimates and Forecasts, Technical Report ZDBID 2112291X, Department of Decision Sciences, European Institute of Business Administration (INSEAD), Paris, France, 2010.

[126] 
B. T. Chen, L. Q. Wang, X. M. Jiang, H. B. Yao. Survey of task assignment for crowdbased cooperative computing. Computer Engineering and Applications, vol. 57, no. 20, pp. 1–12, 2021.

[127] 
I. Lykourentzou, V. J. Khan, K. Papangelis, P. Markopoulos. Macrotask crowdsourcing: An integrated definition. Macrotask Crowdsourcing, V. J. Khan, K. Papangelis, I. Lykourentzou, P. Markopoulos, Eds., Cham, Germany: Springer, pp. 1–13, 2019. DOI: 10.1007/9783030123345_1.

[128] 
Z. Y. Zheng, G. L. Jiang, X. J. Zhang, Z. F. Wang, D. Li. Crowdsourcing quality evaluation algorithm based on sliding task window. Journal of Chinese Computer Systems, vol. 38, no. 9, pp. 2125–2129, 2017. DOI: 10.3969/j.issn.10001220.2017.09.038. (in Chinese)

[129] 
Y. Yan, R. Rosales, G. Fung, J. G. Dy. Active learning from crowds. In Proceedings of the 28th International Conference on Machine Learning, ACM, Bellevue, USA, pp. 1161–1168, 2011. DOI: 10.5555/3104482.3104628.

[130] 
J. Goncalves, M. Feldman, S. B. Q. Hu, V. Kostakos, A. Bernstein. Task routing and assignment in crowdsourcing based on cognitive abilities. In Proceedings of the 26th International Conference on World Wide Web Companion, ACM, Perth, Australia, pp. 1023–1031, 2017. DOI: 10.1145/3041021.3055128.

[131] 
D. Hettiachchi, N. Van Berkel, V. Kostakos, J. Goncalves. CrowdCog: A cognitive skill based system for heterogeneous task assignment and recommendation in crowdsourcing. Proceedings of ACM on HumanComputer Interaction, vol. 4, no. CSCW2, Article number 110, 2020. DOI: 10.1145/3415181.

[132] 
Q. C. Li, H. Cao, S. K. Wang, X. L. Zhao. A reputationbased multiuser task selection incentive mechanism for crowdsensing. IEEE Access, vol. 8, pp. 74887–74900, 2020. DOI: 10.1109/ACCESS.2020.2989406.

[133] 
S. Jagabathula, L. Subramanian, A. Venkataraman. Reputationbased worker filtering in crowdsourcing. In Proceedings of the 27th International Conference on Neural Information Processing Systems, ACM, Montreal, Canada, pp. 2492–2500, 2014. DOI: 10.5555/2969033.2969105.

[134] 
K. L. Huang, S. S. Kanhere, W. Hu. Are you contributing trustworthy data? The case for a reputation system in participatory sensing. In Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Bodrum, Turkey, pp. 14–22, 2010. DOI: 10.1145/1868521.1868526.

[135] 
J. X. Wu, Z. H. Zhang. Collaborative filtering recommendation algorithm based on user rating and similarity of explicit and implicit interest. Computer Science, vol. 48, no. 5, pp. 147–154, 2021. DOI: 10.11896/jsjkx.200300072. (in Chinese)

[136] 
V. Ambati, S. Vogel, J. G. Carbonell. Towards task recommendation in microtask markets. In Proceedings of the 11th AAAI Conference on Human Computation, Palo Alto, USA, pp. 80–83, 2011. DOI: 10.5555/2908698.2908712.

[137] 
F. Xu, Z. C. Ji, B. Wang. Dual role model for question recommendation in community question answering. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, USA, pp. 771–780, 2012. DOI: 10.1145/2348283.2348387.

[138] 
Z. W. Guo, C. W. Tang, W. J. Niu, Y. Q. Fu, T. Wu, H. Y. Xia, H. Tang. Finegrained recommendation mechanism to curb astroturfing in crowdsourcing systems. IEEE Access, vol. 5, pp. 15529–15541, 2017. DOI: 10.1109/ACCESS.2017.2731360.

[139] 
J. Yan, S. P. Ku, C. Yu. Reputation model of crowdsourcing workers based on active degree. Journal of Computer Applications, vol. 37, no. 7, pp. 2039–2043, 2017. DOI: 10.11772/j.issn.10019081.2017.07.2039. (in Chinese)

[140] 
Z. M. Shi. Multiobjective Task Recommendation Method Based on Different Task Characteristics for Crowdsourcing, Master dissertation, School of Mathematics, China University of Mining and Technology, China, 2019. (in Chinese)

[141] 
Q. Zhou, M. Fang. Research on crowdsourcing task allocation algorithm based on multiagent. Intelligent Computer and Applications, vol. 9, no. 1, pp. 104–107, 2019. DOI: 10.3969/j.issn.20952163.2019.01.024. (in Chinese)

[142] 
M. M. Kamel, A. GilSolla, M. RamosCarber. Tasks recommendation in crowdsourcing based on workers′ implicit profiles and performance history. In Proceedings of the 9th International Conference on Software and Information Engineering, ACM, Cairo, Egypt, pp. 51–55, 2020. DOI: 10.1145/3436829.3436834.

[143] 
D. E. Difallah, G. Demartini, P. CudréMauroux. Pickacrowd: Tell me what you like, and i′ll tell you what to do. In Proceedings of the 22nd International Conference on World Wide Web, ACM, Rio de Janeiro, Brazil, pp. 367–374, 2013. DOI: 10.1145/2488388.2488421.

[144] 
G. Wu, Z. Y. Chen, J. Liu, D. H. Han, B. Y. Qiao. Task assignment for socialoriented crowdsourcing. Frontiers of Computer Science, vol. 15, no. 2, Article number 152316, 2021. DOI: 10.1007/s1170401991198.

[145] 
H. Rahman, S. B. Roy, S. Thirumuruganathan, S. AmerYahia, G. Das. Optimized group formation for solving collaborative tasks. The VLDB Journal, vol. 28, no. 1, pp. 1–23, 2019. DOI: 10.1007/s0077801805167.

[146] 
K. Mao, Y. Yang, Q. Wang, Y. Jia, M. Harman. Developer recommendation for crowdsourced software development tasks. In Proceedings of IEEE Symposium on ServiceOriented System Engineering, San Francisco, USA, pp. 347–356, 2015. DOI: 10.1109/SOSE.2015.46.

[147] 
W. Shao, X. N. Wang, W. P. Jiao. A developer recommendation framework in software crowdsourcing development. In Proceedings of the 15th National Software Application Conference on Software Engineering and Methodology for Emerging Domains, Springer, Kunming, China, pp. 151–164, 2016. DOI: 10.1007/9789811034824_11.

[148] 
Y. M. Li, C. Y. Hsieh, L. F. Lin, C. H. Wei. A social mechanism for taskoriented crowdsourcing recommendations. Decision Support Systems, vol. 141, Article number 113449, 2021. DOI: 10.1016/j.dss.2020.113449.

[149] 
M. C. Yuen, I. King, K. S. Leung. Task recommendation in crowdsourcing systems. In Proceedings of the 1st International Workshop on Crowdsourcing and Data Mining, ACM, Beijing, China, pp. 22–26, 2012. DOI: 10.1145/2442657.2442661.

[150] 
M. C. Yuen, I. King, K. S. Leung. An onlineupdating algorithm on probabilistic matrix factorization with active learning for task recommendation in crowdsourcing systems. Big Data Analytics, vol. 1, no. 1, Article number 14, 2016. DOI: 10.1186/s4104401600122.

[151] 
M. C. Yuen, I. King, K. S. Leung. TaskRec: A task recommendation framework in crowdsourcing systems. Neural Processing Letters, vol. 41, no. 2, pp. 223–238, 2015. DOI: 10.1007/s110630149343z.

[152] 
M. Safran, D. R. Che. Efficient learningbased recommendation algorithms for topN tasks and topN workers in largescale crowdsourcing systems. ACM Transactions on Information Systems, vol. 37, no. 1, Article number 2, 2019. DOI: 10.1145/3231934.

[153] 
M. C. Yuen, I. King, K. S. Leung. Temporal contextaware task recommendation in crowdsourcing systems. Knowledgebased Systems, vol. 219, Article number 106770, 2021. DOI: 10.1016/j.knosys.2021.106770.

[154] 
D. W. Gong, C. Peng, X. J. Yao, T. Tian. A model of new workers′ accurate acceptance of tasks using capable sensing. Swarm and Evolutionary Computation, vol. 59, Article number 100732, 2020. DOI: 10.1016/j.swevo.2020.100732.

[155] 
Z. M. Shi, D. W. Gong, X. J. Yao, M. Y. Yang. New task oriented recommendation method based on Hungarian algorithm in crowdsourcing platform. Proceedings of IEEE World Congress on Services, Beijing, China, pp. 134–144, 2020. DOI: 10.1109/SERVICES48979.2020.00040.

[156] 
J. Y. Tu, P. Cheng, L. Chen. Qualityassured synchronized task assignment in crowdsourcing. IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 3, pp. 1156–1168, 2021. DOI: 10.1109/tkde.2019.2935443.

[157] 
G. Wang, F. Ali, J. Yang, S. Nazir, T. Yang, A. Khan, M. Imtiaz. Multicriteriabased crowd selection using ant colony optimization. Complexity, vol. 2021, Article number 6622231, 2021. DOI: 10.1155/2021/6622231.

[158] 
Y. S. Zhu, S. C. Yue, C. Yu, Y. C. Shi. CEPT: Collaborative editing tool for nonnative authors. In Proceedings of ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, USA, pp. 273–285, 2017. DOI: 10.1145/2998181.2998306.

[159] 
Y. N. Chen, X. J. Su, F. Tian, J. Huang, X. L. Zhang. Pactolus: A method for midair gesture segmentation within EMG. In Proceedings of CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM, San Jose, USA, pp. 1760–1765, 2016. DOI: 10.1145/2851581.2892492.

[160] 
M. M. Sheng, Z. D. Wang, W. B. Liu, X. Wang, S. Y. Chen, X. H. Liu. A particle swarm optimizer with multilevel population sampling and dynamic plearning mechanisms for largescale optimization. Knowledgebased Systems, vol. 242, Article number 108382, 2021. DOI: 10.1016/j.knosys.2022.108382.

[161] 
W. Z. Li, W. A. Guo, Y. M. Li, L. Wang, Q. D. Wu. Multiswarm competitive swarm optimizer for largescale optimization by entropyassisted diversity measurement and management. Concurrency and Computation:Practice and Experience, vol. 33, no. 9, Article number e6126, 2021. DOI: 10.1002/cpe.6126.

[162] 
H. W. Ge, M. D. Zhao, Y. Q. Hou, Z. Kai, L. Sun, G. Z. Tan, Q. Zhang, C. L. P. Chen. Bispace Interactive Cooperative Coevolutionary algorithm for large scale blackbox optimization. Applied Soft Computing, vol. 97, Article number 106798, 2020. DOI: 10.1016/j.asoc.2020.106798.

[163] 
Y. J. Ma, L. Zhu, Y. L. Bai. Improved multipopulation differential evolution for largescale global optimization. Computing and Informatics, vol. 39, no. 3, pp. 481–509, 2020. DOI: 10.31577/cai_2020_3_481.

[164] 
M. Yang, A. M. Zhou, C. H. Li, J. Guan, X. S. Yan. CCFR2: A more efficient cooperative coevolutionary framework for largescale global optimization. Information Sciences, vol. 512, pp. 64–79, 2020. DOI: 10.1016/j.ins.2019.09.065.

[165] 
W. N. Chen, Y. H. Jia, F. Zhao, X. N. Luo, X. D. Jia, J. Zhang. A cooperative coevolutionary approach to largescale multisource water distribution network optimization. IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 842–857, 2019. DOI: 10.1109/TEVC.2019.2893447.

[166] 
L. RodriguezCoayahuitl, A. MoralesReyes, H. J. Escalante, C. A. C. Coello. Cooperative coevolutionary genetic programming for high dimensional problems. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature, Springer, Leiden, Netherlands, pp. 48–62, 2020. DOI: 10.1007/9783030581152_4.

[167] 
J. F. Chen, Y. H. Wang, X. S. Xue, S. Cheng, M. ElAbd. Cooperative coevolutionary metaheuristics for solving largescale TSP art project. In Proceedings of IEEE Symposium Series on Computational Intelligence, Xiamen, China, pp. 2706–2713, 2019. DOI: 10.1109/SSCI44817.2019.9002754.

[168] 
X. Zhang, K. J. Du, Z. H. Zhan, S. Kwong, T. L. Gu, J. Zhang. Cooperative coevolutionary barebones particle swarm optimization with function independent decomposition for largescale supply chain network design with uncertainties. IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 4454–4468, 2020. DOI: 10.1109/TCYB.2019.2937565.

[169] 
J. Y. Li, Z. H. Zhan, K. C. Tan, J. Zhang. Dual differential grouping: A more general decomposition method for largescale optimization. IEEE Transactions on Cybernetics, to be published. DOI: 10.1109/TCYB.2022.3158391.

[170] 
N. Y. Zeng, D. D. Song, H. Li, Y. C. You, Y. R. Liu, F. E. Alsaadi. A competitive mechanism integrated multiobjective whale optimization algorithm with differential evolution. Neurocomputing, vol. 432, pp. 170–182, 2021. DOI: 10.1016/j.neucom.2020.12.065.

[171] 
D. W. Gong, B. Xu, Y. Zhang, Y. N. Guo, S. X. Yang. A similaritybased cooperative coevolutionary algorithm for dynamic interval multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, vol. 24, no. 1, pp. 142–156, 2020. DOI: 10.1109/TEVC.2019.2912204.

[172] 
W. M. Huang, W. Zhang. Multiobjective optimization based on an adaptive competitive swarm optimizer. Information Sciences, vol. 583, pp. 266–287, 2022. DOI: 10.1016/j.ins.2021.11.031.

[173] 
J. T. Shen, P. Wang, H. C. Dong, J. L. Li, W. X. Wang. A multistage evolutionary algorithm for manyobjective optimization. Information Sciences, vol. 589, pp. 531–549, 2022. DOI: 10.1016/j.ins.2021.12.096.

[174] 
S. C. Liu, Z. G. Chen, Z. H. Zhan, S. W. Jeon, S. Kwong, J. Zhang. Manyobjective jobshop scheduling: A multiple populations for multiple objectivesbased genetic algorithm approach. IEEE Transactions on Cybernetics, to be published. DOI: 10.1109/TCYB.2021.3102642.

[175] 
X. Zhang, Z. H. Zhan, W. Fang, P. J. Qian, J. Zhang. Multipopulation ant colony system with knowledgebased local searches for multiobjective supply chain configuration. IEEE Transactions on Evolutionary Computation, vol. 26, no. 3, pp. 512–526, 2022. DOI: 10.1109/TEVC.2021.3097339.

[176] 
S. Kashef, H. NezamabadiPour. An advanced ACO algorithm for feature subset selection. Neurocomputing, vol. 147, pp. 271–279, 2015. DOI: 10.1016/j.neucom.2014.06.067.

[177] 
Y. Zelenkov, E. Fedorova, D. Chekrizov. Twostep classification method based on genetic algorithm for bankruptcy forecasting. Expert Systems with Applications, vol. 88, pp. 393–401, 2017. DOI: 10.1016/j.eswa.2017.07.025.

[178] 
L. Nanni, A. Lumini. Particle swarm optimization for prototype reduction. Neurocomputing, vol. 72, pp. 4–6, 2009. DOI: 10.1016/j.neucom.2008.03.008.

[179] 
W. W. Hu, Y. Tan. Prototype generation using multiobjective particle swarm optimization for nearest neighbor classification. IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 2719–2731, 2016. DOI: 10.1109/TCYB.2015.2487318.

[180] 
I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition, vol. 44, no. 4, pp. 901–916, 2011. DOI: 10.1016/j.patcog.2010.10.020.

[181] 
J. PerezRodriguez, A. G. ArroyoPeña, N. GarcíaPedrajas. Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study. Applied Soft Computing, vol. 37, pp. 416–443, 2015. DOI: 10.1016/j.asoc.2015.07.046.

[182] 
M. R. G. Raman, N. Somu, K. Kirthivasan, R. Liscano, V. S. S. Sriram. An efficient intrusion detection system based on hypergraphgenetic algorithm for parameter optimization and feature selection in support vector machine. Knowledgebased Systems, vol. 134, pp. 1–12, 2017. DOI: 10.1016/j.knosys.2017.07.005.

[183] 
R. Xu, J. Xu, D. C. Wunsch. A comparison study of validity indices on swarmintelligencebased clustering. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics)

[184] 
W. J. Luo, W. J. Zhu, L. Ni, Y. Y. Qiao, Y. G. Yuan. SCA2: Novel efficient swarm clustering algorithm. IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 5, no. 3, pp. 442–456, 2021. DOI: 10.1109/TETCI.2019.2961190.

[185] 
K. Georgieva, A. P. Engelbrecht. A cooperative multipopulation approach to clustering temporal data. In Proceedings of IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 1983–1991, 2013. DOI: 10.1109/CEC.2013.6557802.

[186] 
Y. H. Liu. Crowd sensing computing. Communications of CCF, vol. 8, no. 10, pp. 38–41, 2012. (in Chinese)

[187] 
H. L. Sun, Y. L. Fang, G. L. Li. Quality assurance method of collective intelligence system. Communications of CCF, vol. 14, no. 11, pp. 18–25, 2018. (in Chinese)

[188] 
Y. H. Ma, H. Zhang, Y. Z. Zhang, R. Z. Gao, Z. Xu, J. Yang. Coordinated optimization algorithm combining GA with cluster for multiUAVs to multitasks task assignment and path planning. In Proceedings of the 15th IEEE International Conference on Control and Automation, Edinburgh, UK, pp. 1026–1031, 2019. DOI: 10.1109/ICCA.2019.8899987.

[189] 
F. Wang, H. Zhang, M. C. Han, L. N. Xing. Coevolution based mixedvariable multiobjective particle swarm optimization for UAV cooperative multitask allocation problem. Chinese Journal of Computers, vol. 44, no. 10, pp. 1967–1983, 2021. DOI: 10.11897/SP.J.1016.2021.01967.

[190] 
Y. B. Chen, D. Yang, J. Q. Yu. MultiUAV task assignment with parameter and timesensitive uncertainties using modified twopart wolf pack search algorithm. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 6, pp. 2853–2872, 2018. DOI: 10.1109/TAES.2018.2831138.

[191] 
W. N. Wu, X. G. Wang, N. G. Cui. Fast and coupled solution for cooperative mission planning of multiple heterogeneous unmanned aerial vehicles. Aerospace Science and Technology, vol. 79, pp. 131–144, 2018. DOI: 10.1016/j.ast.2018.05.039.

[192] 
T. Q. Chang, D. P. Kong, N. Hao, K. H. Xu, G. Z. Yang. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization. Applied Soft Computing, vol. 70, pp. 845–863, 2018. DOI: 10.1016/j.asoc.2018.06.014.

[193] 
X. Yi, A. M. Zhu, S. X. Yang, C. M. Luo. A bioinspired approach to task assignment of swarm robots in 3D dynamic environments. IEEE Transactions on Cybernetics, vol. 47, no. 4, pp. 974–983, 2017. DOI: 10.1109/TCYB.2016.2535153.

[194] 
Z. X. Zheng, J. Guo, E. Gill. Distributed onboard mission planning for multisatellite systems. Aerospace Science and Technology, vol. 89, pp. 111–122, 2019. DOI: 10.1016/j.ast.2019.03.054.

[195] 
W. Q. Xu, C. Chen, S. X. Ding, P. M. Pardalos. A biobjective dynamic collaborative task assignment under uncertainty using modified MOEA/D with heuristic initialization. Expert Systems with Applications, vol. 140, Article number 112844, 2020. DOI: 10.1016/j.eswa.2019.112844.

[196] 
C. T. Shi, Y. Y. Zeng, S. M. Hou. Summary of application of swarm intelligence algorithms in image segmentation. Computer Engineering and Applications, vol. 57, no. 8, pp. 36–47, 2021. DOI: 10.3778/j.issn.10028331.20110416. (in Chinese)

[197] 
L. X. Xu, H. Y. Wu. Collective intelligence based software engineering. Journal of Computer Research and Development, vol. 57, no. 3, pp. 487–512, 2020. DOI: 10.7544/issn10001239.2020.20190626. (in Chinese)

[198] 
Y. Y. Fanjiang, Y. Syu. Semanticbased automatic service composition with functional and nonfunctional requirements in design time: A genetic algorithm approach. Information and Software Technology, vol. 56, no. 3, pp. 352–373, 2014. DOI: 10.1016/j.infsof.2013.12.001.

[199] 
H. Zhu, H. Z. He, Q. H. Fang, Y. Dai, D. H. Jiang. Ant colony algorithm and density peaks clustering for medical image segmentation. Journal of Nanjing Normal University (Natural Science Edition)

[200] 
J. Zhao, X. L. Wang, M. Li. A novel neutrosophic image segmentation based on improved fuzzy Cmeans algorithm (NISIFCM). International Journal of Pattern Recognition and Artificial Intelligence, vol. 34, no. 5, Article number 2055011, 2020. DOI: 10.1142/S0218001420550113.

[201] 
S. L. Zhang, J. L. Huang, J. Hanan, L. Qin. A hyperspectral GAPLSR model for prediction of pine wilt disease. Multimedia Tools and Applications, vol. 79, no. 23–24, pp. 16645–16661, 2020. DOI: 10.1007/s11042019079765.

[202] 
M. Harman, B. F. Jones. Searchbased software engineering. Information and Software Technology, vol. 43, no. 14, pp. 833–839, 2001. DOI: 10.1016/S09505849(01)001896.

[203] 
K. Mao, L. Capra, M. Harman, Y. Jia. A survey of the use of crowdsourcing in software engineering. Journal of Systems and Software, vol. 126, pp. 57–84, 2017. DOI: 10.1016/j.jss.2016.09.015.

[204] 
Q. W. Wu, F. Ishikawa, Q. S. Zhu, Y. N. Xia, J. H. Wen. Deadlineconstrained cost optimization approaches for workflow scheduling in clouds. IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3401–3412, 2017. DOI: 10.1109/TPDS.2017.2735400.

[205] 
Q. W. Wu, F. Ishikawa, Q. S. Zhu, Y. N. Xia. Energy and migration costaware dynamic virtual machine consolidation in heterogeneous cloud datacenters. IEEE Transactions on Services Computing, vol. 12, no. 4, pp. 550–563, 2019. DOI: 10.1109/TSC.2016.2616868.

[206] 
S. Gheisari, M. R. Meybodi. BNCPSO: Structure learning of Bayesian networks by particle swarm optimization. Information Sciences, vol. 348, pp. 272–289, 2016. DOI: 10.1016/j.ins.2016.01.090.

[207] 
C. Su, T. Hou. Using multipopulation intelligent genetic algorithm to find the Paretooptimal parameters for a Nanoparticle milling process. Expert Systems with Applications, vol. 34, no. 4, pp. 2502–2510, 2008. DOI: 10.1016/j.eswa.2007.04.017.

[208] 
S. Suganthi, S. P. Rajagopalan. Multiswarm particle swarm optimization for energyeffective clustering in wireless sensor networks. Wireless Personal Communications, vol. 94, no. 4, pp. 2487–2497, 2017. DOI: 10.1007/s1127701635646.

[209] 
G. Y. Wang. DGCC: Datadriven granular cognitive computing. Granular Computing, vol. 2, no. 4, pp. 343–355, 2017. DOI: 10.1007/s4106601700483.
