Published Online

Display Method:
Research Article
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
Cheng-Cheng Ma, Bao-Yuan Wu, Yan-Bo Fan, Yong Zhang, Zhi-Feng Li
doi: 10.1007/s11633-022-1328-1
Abstract:
Adversarial example has been well known as a serious threat to deep neural networks (DNNs). In this work, we study the detection of adversarial examples based on the assumption that the output and internal responses of one DNN model for both adversarial and benign examples follow the generalized Gaussian distribution (GGD) but with different parameters (i.e., shape factor, mean, and variance). GGD is a general distribution family that covers many popular distributions (e.g., Laplacian, Gaussian, or uniform). Therefore, it is more likely to approximate the intrinsic distributions of internal responses than any specific distribution. Besides, since the shape factor is more robust to different databases rather than the other two parameters, we propose to construct discriminative features via the shape factor for adversarial detection, employing the magnitude of Benford-Fourier (MBF) coefficients, which can be easily estimated using responses. Finally, a support vector machine is trained as an adversarial detector leveraging the MBF features. Extensive experiments in terms of image classification demonstrate that the proposed detector is much more effective and robust in detecting adversarial examples of different crafting methods and sources compared to state-of-the-art adversarial detection methods.
Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism
Lin Song, Jin-Fu Yang, Qing-Zhen Shang, Ming-Ai Li
doi: 10.1007/s11633-022-1327-2
Abstract:
Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method.