Citation: | Kai Zhang, Yawei Li, Jingyun Liang, Jiezhang Cao, Yulun Zhang, Hao Tang, Deng-Ping Fan, Radu Timofte, Luc Van Gool. Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis. Machine Intelligence Research, vol. 20, no. 6, pp.822-836, 2023. https://doi.org/10.1007/s11633-023-1466-0 |
[1] |
P. Chatterjee, P. Milanfar. Is denoising dead? IEEE Transactions on Image processing, vol. 19, no. 4, pp. 895–911, 2009. DOI: 10.1109/TIP.2009.2037087.
|
[2] |
M. V. Afonso, J. M. Bioucas-Dias, M. A. T. Figueiredo. Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2345–2356, 2010. DOI: 10.1109/TIP.2010.2047910.
|
[3] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011. DOI: 10.1561/2200000016.
|
[4] |
U. S. Kamilov, H. Mansour, B. Wohlberg. A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1872–1876, 2017. DOI: 10.1109/LSP.2017.2763583.
|
[5] |
T. Plötz, S. Roth. Benchmarking denoising algorithms with real photographs. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Honolulu, USA, pp. 2750–2759, 2017. DOI: 10.1109/CVPR.2017.294.
|
[6] |
T. Brooks, B. Mildenhall, T. F. Xue, J. W. Chen, D. Sharlet, J. T. Barron. Unprocessing images for learned raw denoising. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Long Beach, USA, pp. 11028–11037, 2019. DOI: 10.1109/CVPR.2019.01129.
|
[7] |
K. Zhang, W. M. Zuo, Y. J. Chen, D. Y. Meng, L. Zhang. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image processing, vol. 26, no. 7, pp. 3142–3155, 2017. DOI: 10.1109/TIP.2017.2662206.
|
[8] |
T. Plötz, S. Roth. Neural nearest neighbors networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal Canada, pp. 1095–1106, 2018.
|
[9] |
D. Liu, B. H. Wen, Y. C. Fan, C. C. Loy, T. S. Huang. Non-local recurrent network for image restoration. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 1680–1689, 2018.
|
[10] |
K. Zhang, Y. W. Li, W. M. Zuo, L. Zhang, L. Van Gool, R. Timofte. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2022. DOI: 10.1109/TPAMI.2021.3088914.
|
[11] |
J. Y. Liang, J. Z. Cao, G. L. Sun, K. Zhang, L. Van Gool, R. Timofte. SwinIR: Image restoration using swin transformer. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision Workshops, IEEE, Montreal, Canada, pp. 1833–1844, 2021. DOI: 10.1109/ICCVW54120.2021.00210.
|
[12] |
H. C. Burger, C. Schuler, S. Harmeling. Learning how to combine internal and external denoising methods. In Proceedings of the 35th German Conference on Pattern Recognition, Springer, Saarbrücken, Germany, pp. 121–130, 2013. DOI: 10.1007/978-3-642-40602-7_13.
|
[13] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Identity mappings in deep residual networks. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 630–645, 2016. DOI: 10.1007/978-3-319-46493-0_38.
|
[14] |
Z. Liu, Y. T. Lin, Y. Cao, H. Hu, Y. X. Wei, Z. Zhang, S. Lin, B. N. Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 9992–10002, 2021. DOI: 10.1109/ICCV48922.2021.00986.
|
[15] |
J. W. Chen, J. W. Chen, H. Y. Chao, M. Yang. Image blind denoising with generative adversarial network based noise modeling. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3155–3164, 2018. DOI: 10.1109/CVPR.2018.00333.
|
[16] |
S. Guo, Z. F. Yan, K. Zhang, W. M. Zuo, L. Zhang. Toward convolutional blind denoising of real photographs. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Long Beach, USA, pp. 1712–1722, 2019. DOI: 10.1109/CVPR.2019.00181.
|
[17] |
A. Krull, T. O. Buchholz, F. Jug. Noise2Void-learning denoising from single noisy images. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Long Beach, USA, pp. 2124–2132, 2019. DOI: 10.1109/CVPR.2019.00223.
|
[18] |
Z. S. Yue, H. W. Yong, Q. Zhao, L. Zhang, D. Y. Meng. Variational denoising network: Toward blind noise modeling and removal. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 151, 2019.
|
[19] |
A. Buades, B. Coll, J. M. Morel. A non-local algorithm for image denoising. In Proceedings of IEEE Computer Society Conference on Computer Ⅴision and Pattern Recognition, IEEE, San Diego, USA, pp. 60–65, 2005. DOI: 10.1109/CVPR.2005.38.
|
[20] |
K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. DOI: 10.1109/TIP.2007.901238.
|
[21] |
J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman. Non-local sparse models for image restoration. In Proceedings of the IEEE 12th International Conference on Computer Ⅴision, IEEE, Kyoto, Japan, pp. 2272–2279, 2009. DOI: 10.1109/ICCV.2009.5459452.
|
[22] |
S. H. Gu, L. Zhang, W. M Zuo, X. C. Feng. Weighted nuclear norm minimization with application to image denoising. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Columbus, USA, pp. 2862–2869, 2014. DOI: 10.1109/CVPR.2014.366.
|
[23] |
J. Sun, M. F. Tappen. Learning non-local range markov random field for image restoration. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Colorado Springs, USA, pp. 2745–2752, 2011. DOI: 10.1109/CVPR.2011.5995520.
|
[24] |
S. Lefkimmiatis. Non-local color image denoising with convolutional neural networks. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Honolulu, USA, pp. 5882–5891, 2017. DOI: 10.1109/CVPR.2017.623.
|
[25] |
H. T. Chen, Y. H. Wang, T. Y. Guo, C. Xu, Y. P. Deng, Z. H. Liu, S. W. Ma, C. J. Xu, C. Xu, W. Gao. Pre-trained image processing transformer. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Nashville, USA, pp. 12294–12305, 2021. DOI: 10.1109/CVPR46437.2021.01212.
|
[26] |
U. Schmidt, S. Roth. Shrinkage fields for effective image restoration. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Columbus, USA, pp. 2774–2781, 2014. DOI: 10.1109/CVPR.2014.349.
|
[27] |
Y. J. Chen, T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–1272, 2017. DOI: 10.1109/TPAMI.2016.2596743.
|
[28] |
O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image computing and Computer-assisted Intervention, Springer, Munich, Germany, pp. 234–241, 2015. DOI: 10.1007/978-3-319-24574-4_28.
|
[29] |
B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee. Enhanced deep residual networks for single image super-resolution. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition Workshops, IEEE, Honolulu, USA, pp. 1132–1140, 2017. DOI: 10.1109/CVPRW.2017.151.
|
[30] |
C. L Li, T. Tang, G. R. Wang, J. F. Peng, B. Wang, X. D. Liang, X. J. Chang. Bossnas: Exploring hybrid CNN-transformers with block-wisely self-supervised neural architecture search. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 12261–12271, 2021. DOI: 10.1109/ICCV48922.2021.01206.
|
[31] |
K. Yuan, S. P. Guo, Z. W. Liu, A. J. Zhou, F. W. Yu, W. Wu. Incorporating convolution designs into visual transformers. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 559–568, 2021. DOI: 10.1109/ICCV48922.2021.00062.
|
[32] |
J. Y. Guo, K. Han, H. Wu, Y. H. Tang, X. H. Chen, Y. H. Wang, C. Xu. CMT: Convolutional neural networks meet vision transformers. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, New Orleans, USA, pp. 12165–12175, 2022. DOI: 10.1109/CVPR52688.2022.01186.
|
[33] |
Z. D. Wang, X. D. Cun, J. M. Bao, W. G. Zhou, J. Z. Liu, H. Q. Li. Uformer: A general U-shaped transformer for image restoration. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, New Orleans, USA, pp. 17662–17672, 2022. DOI: 10.1109/CVPR52688.2022.01716.
|
[34] |
H. Cao, Y. Y. Wang, J. Chen, D. S. Jiang, X. P. Zhang, Q. Tian, M. N. Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the 17th European Conference on Computer Ⅴision, Springer, Tel Aviv, Israel, pp. 205–218, 2023. DOI: 10.1007/978-3-031-25066-8_9.
|
[35] |
Y. W. Li, K. Zhang, J. Z. Cao, R. Timofte, L. Van Gool. LocalViT: Bringing locality to vision transformers, [Online], Available: https://arxiv.org/abs/2104.05707, 2021.
|
[36] |
K. Zhang, W. M. Zuo, L. Zhang. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, vol. 27, no. 9, pp. 4608–4622, 2018. DOI: 10.1109/TIP.2018.2839891.
|
[37] |
S. Nam, Y. Hwang, Y. Matsushita, S. J. Kim. A holistic approach to cross-channel image noise modeling and its application to image denoising. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 1683–1691, 2016. DOI: 10.1109/CVPR.2016.186.
|
[38] |
S. W. Hasinoff. Photon, poisson noise. Computer Vision: A Reference Guide, K. Ikeuchi, Ed., New York, USA: Springer, pp. 608–610, 2014. DOI: 10.1007/978-0-387-31439-6_482.
|
[39] |
M. Tur, K. C. Chin, J. W. Goodman. When is speckle noise multiplicative? Applied Optics, vol. 21, no. 7, pp. 1157–1159, 1982. DOI: 10.1364/AO.21.001157.
|
[40] |
R. Racine, G. A. H. Walker, D. Nadeau, R. Doyon, C. Marois. Speckle noise and the detection of faint companions. Publications of the Astronomical Society of the Pacific, vol. 111, no. 759, pp. 587–594, 1999. DOI: 10.1086/316367.
|
[41] |
K. Zhang, J. Y. Liang, L. Van Gool, R. Timofte. Designing a practical degradation model for deep blind image super-resolution. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 4771–4780, 2021. DOI: 10.1109/ICCV48922.2021.00475.
|
[42] |
M. D. Grossberg, S. K. Nayar. What is the space of camera response functions? In Proceedings of IEEE Computer Society Conference on Computer Ⅴision and Pattern Recognition, IEEE, Madison, USA, pp. II–602, 2003. DOI: 10.1109/CVPR.2003.1211522.
|
[43] |
X. T. Wang, L. B. Xie, C. Dong, Y. Shan. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision Workshops, IEEE, Montreal, Canada, pp. 1905–1914, 2021. DOI: 10.1109/ICCVW54120.2021.00217.
|
[44] |
J. X. Jiang, K. Zhang, R. Timofte. Towards flexible blind JPEG artifacts removal. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 4977–4986, 2021. DOI: 10.1109/ICCV48922.2021.00495.
|
[45] |
K. D. Ma, Z. F. Duanmu, Q. B. Wu, Z. Wang, H. W. Yong, H. L. Li, L. Zhang. Waterloo exploration database: New challenges for image quality assessment models. IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 1004–1016, 2017. DOI: 10.1109/TIP.2016.2631888.
|
[46] |
E. Agustsson, R. Timofte. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition Workshops, IEEE, Honolulu, USA, pp. 1122–1131, 2017. DOI: 10.1109/CVPRW.2017.150.
|
[47] |
D. P. Kingma, J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[48] |
D. Martin, C. Fowlkes, D. Tal, J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th IEEE International Conference on Computer Ⅴision, IEEE, Vancouver, Canada, pp. 416–423, 2001. DOI: 10.1109/ICCV.2001.937655.
|
[49] |
S. Roth, M. J. Black. Fields of experts. International Journal of Computer Vision, vol. 82, no. 2, pp. 205–229, 2009. DOI: 10.1007/s11263-008-0197-6.
|
[50] |
J. B. Huang, A. Singh, N. Ahuja. Single image super-resolution from transformed self-exemplars. In Proceedings of IEEE Conference on Computer Ⅴision and Pattern Recognition, IEEE, Boston, USA, pp. 5197–5206, 2015. DOI: 10.1109/CVPR.2015.7299156.
|
[51] |
Y. L. Zhang, K. P. Li, K. Li, B. N. Zhong, Y. Fu. Residual non-local attention networks for image restoration. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[52] |
X. X. Jia, S. Y. Liu, X. C. Feng, L. Zhang. FOCNet: A fractional optimal control network for image denoising. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Long Beach, USA, pp. 6047–6056, 2019. DOI: 10.1109/CVPR.2019.00621.
|
[53] |
C. Mou, J. Zhang, Z. Y. Wu. Dynamic attentive graph learning for image restoration. In Proceedings of IEEE/CVF International Conference on Computer Ⅴision, IEEE, Montreal, Canada, pp. 4308–4317, 2021. DOI: 10.1109/ICCV48922.2021.00429.
|
[54] |
S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. khan, M. H. Yang. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, New Orleans, USA, pp. 5718–5729, 2022. DOI: 10.1109/CVPR52688.2022.00564.
|
[55] |
R. Franzen. Kodak lossless true color image suite, [Online], Available: https://r0k.us/graphics/kodak, November 15, 1999.
|
[56] |
L. Zhang, X. L. Wu, A. Buades, X. Li. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. Journal of Electronic Imaging, vol. 20, no. 2, Article number 023016, 2011. DOI: 10.1117/1.3600632.
|
[57] |
Y. L. Peng, L. Zhang, S. G. Liu, X. J. Wu, Y. Zhang, X. L. Wang. Dilated residual networks with symmetric skip connection for image denoising. Neurocomputing, vol. 345, pp. 67–76, 2019. DOI: 10.1016/j.neucom.2018.12.075.
|
[58] |
C. W. Tian, Y. Xu, W. M. Zuo. Image denoising using deep CNN with batch renormalization. Neural Networks, vol. 121, pp. 461–473, 2020. DOI: 10.1016/j.neunet.2019.08.022.
|
[59] |
Y. L. Zhang, Y. P. Tian, Y. Kong, B. N. Zhong, Y. Fu. Residual dense network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 7, pp. 2480–2495, 2021. DOI: 10.1109/TPAMI.2020.2968521.
|
[60] |
M. Lebrun, M. Colom, J. M. Morel. The noise clinic: A blind image denoising algorithm. Image Processing on Line, vol. 5, pp. 1–54, 2015. DOI: 10.5201/ipol.2015.125.
|
[61] |
C. Ren, X. H. He, C. C. Wang, Z. B. Zhao. Adaptive consistency prior based deep network for image denoising. In Proceedings of IEEE/CVF Conference on Computer Ⅴision and Pattern Recognition, IEEE, Nashville, USA, pp. 8592–8602, 2021. DOI: 10.1109/CVPR46437.2021.00849.
|
[62] |
A. Mittal, R. Soundararajan, A. C. Bovik. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013. DOI: 10.1109/LSP.2012.2227726.
|
[63] |
C. Ma, C. Y. Yang, X. K. Yang, M. H. Yang. Learning a no-reference quality metric for single-image super-resolution. Computer Ⅴision and Image Understanding, vol. 158, pp. 1–16, 2017. DOI: 10.1016/j.cviu.2016.12.009.
|
[64] |
N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, S. S. Medasani. Blind image quality evaluation using perception based features. In Proceedings of the 21th First National Conference on communications, IEEE, Mumbai, India, pp. 1–6, 2015. DOI: 10.1109/NCC.2015.7084843.
|