Zhuorong Li, Yunqi Tang. Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory. Machine Intelligence Research, vol. 20, no. 6, pp.884-896, 2023. https://doi.org/10.1007/s11633-022-1403-7
Citation: Zhuorong Li, Yunqi Tang. Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory. Machine Intelligence Research, vol. 20, no. 6, pp.884-896, 2023. https://doi.org/10.1007/s11633-022-1403-7

Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory

doi: 10.1007/s11633-022-1403-7
More Information
  • Author Bio:

    Zhuorong Li received B. Sc. degree in forensic science from People′s Public Security University of China, China in 2020. She is currently a master student in forensic science at Department of Criminal Investigation, People′s Public Security University of China, China. Her research interests include forensic science and biometric recognition. E-mail: lizhuorong@stu.ppsuc.edu.cn

    Yunqi Tang received the B. Sc. degree in computer science from Civil Aviation University of China, China in 2005, the M. Sc. degree in computer science from Beihang University, China in 2008, and the Ph. D. degree in computer science and technology from National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China in 2013. He is currently an associate professor with Department of Criminal Investigation, People′s Public Security University of China, China. His research interests include pattern recognition and machine learning. E-mail: tangyunqi@ppsuc.edu.cn (Corresponding author)

  • Received Date: 2022-04-22
  • Accepted Date: 2022-12-12
  • Publish Online: 2023-04-13
  • Publish Date: 2023-12-01
  • Score-based multimodal biometric fusion has been shown to be successful in addressing the problem of unimodal techniques′ vulnerability to attack and poor performance in low-quality data. However, difficulties still exist in how to unify the meaning of heterogeneous scores more effectively. Aside from the matching scores themselves, the importance of the ranking information they include has been undervalued in previous studies. This study concentrates on matching scores and their ranking information and suggests the ranking partition collision (RPC) theory from the standpoint of the worth of scores. To meet both forensic and judicial needs, this paper proposes a method that employs a neural network to fuse biometrics at the score level. In addition, this paper constructs a virtual homologous dataset and conducts experiments on it. Experimental results demonstrate that the proposed method achieves an accuracy of 100% in both mAP and Rank1. To show the efficiency of the proposed method in practical applications, this work carries out more experiments utilizing real-world data. The results show that the proposed approach maintains a Rank1 accuracy of 99.2% on the million-scale database. It offers a novel approach to fusion at the score level.

     

  • loading
  • [1]
    J. A. Unar, W. C. Seng, A. Abbasi. A review of biometric technology along with trends and prospects. Pattern Recognition, vol. 47, no. 8, pp. 2673–2688, 2014. DOI: 10.1016/j.patcog.2014.01.016.
    [2]
    Z. N. Sun, R. He, L. Wang, M. N. Kan, J. J. Feng, F. Zheng, W. S. Zheng, W. M. Zuo, W. X. Kang, W. H. Deng, J. Zhang, H. Han, S. G. Shan, Y. L. Wang, Y. W. Ru, Y. H. Zhu, Y. F. Liu, Y. He. Overview of biometrics research. Journal of Image and Graphics, vol. 26, no. 6, pp. 1254–1329, 2021. (in Chinese)
    [3]
    L. Song, J. F. Yang, Q. Z. Shang, M. A. Li. Dense face network: A dense face detector based on global context and visual attention mechanism. Machine Intelligence Research, vol. 19, no. 3, pp. 247–256, 2022. DOI: 10.1007/s11633-022-1327-2.
    [4]
    L. Y. Xu, Z. Gajic. Improved network for face recognition based on feature super resolution method. International Journal of Automation and Computing, vol. 18, no. 6, pp. 915–925, 2021. DOI: 10.1007/s11633-021-1309-9.
    [5]
    M. Jacquet, C. Champod. Automated face recognition in forensic science: Review and perspectives. Forensic Science International, vol. 307, pp. 110–124, 2020. DOI: 10.1016/j.forsciint.2019.110124.
    [6]
    L. Fei, B. Zhang, Y. Xu, C. Tian, D. Zhang. Jointly heterogeneous palmprint discriminant feature learning. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4979–4990, 2021. DOI: 10.1109/TNNLS.2021.3066381.
    [7]
    R. Brunelli, D. Falavigna. Person identification using multiple cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 10, pp. 955–966, 1995. DOI: 10.1109/34.464560.
    [8]
    E. S. Bigün, J. Bigün, B. Duc, S. Fischer. Expert conciliation for multi modal person authentication systems by Bayesian statistics. In Proceedings of the 1st International Conferences on Audio-based and Video-based Biometric Person Authentication, Springer, Crans-Montana, Switzerland, pp. 291–300, 1997. DOI: 10.1007/BFb0016008.
    [9]
    P. Verlinde, G. Chollet. Combining vocal and visual cues in an identity verification system using K-NN based classifiers. In Proceedings of the 2nd IEEE Workshop on Multimedia Signal Processing, Redondo Beach, USA, pp. 59–64, 1998. DOI: 10.1109/MMSP.1998.738913.
    [10]
    A. Ross, A. Jain. Information fusion in biometrics. Pattern Recognition Letters, vol. 24, no. 13, pp. 2115–2125, 2003. DOI: 10.1016/S0167-8655(03)00079-5.
    [11]
    Y. L. Zhang, J. Yang, H. T. Wu, Y. F. Xue. Swipe fingerprint sequences mosaicking based on the extension of phase-correlation. Journal of Shanghai Jiaotong University, vol. 40, no. 3, pp. 471–475, 2006. DOI: 10.16183/j.cnki.jsjtu.2006.03.024. (in Chinese)
    [12]
    J. G. Heo, S. G. Kong, B. R. Abidi, M. A. Abidi. Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In Proceedings of Conference on Computer Vision and Pattern Recognition Workshop, IEEE, Washington DC, USA, 2004. DOI: 10.1109/CVPR.2004.351.
    [13]
    X. L. Ning, Z. X. Chen. Face panoramic image mosaic algorithm for face diagnosis. Chinese Journal of Medical Physics, vol. 37, no. 4, pp. 456–462, 2020. DOI: 10.3969/j.issn.1005-202X.2020.04.011. (in Chinese)
    [14]
    D. Yaman, F. I. Eyiokur, H. K. Ekenel. Multimodal age and gender classification using ear and profile face images. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Long Beach, USA, pp. 2414–2421, 2019. DOI: 10.1109/CVPRW.2019.00296.
    [15]
    A. Rattani, M. Tistarelli. Robust multi-modal and multi-unit feature level fusion of face and iris biometrics. In Proceedings of the 3rd International Conferences on Advances in Biometrics, Springer, Alghero, Italy, pp. 960–969, 2009. DOI: 10.1007/978-3-642-01793-3_97.
    [16]
    Q. Hu, C. D. Wu, J. N. Chi, X. S. Yu, H. Wang. Multi-level feature fusion facial expression recognition network. In Proceedings of Chinese Control and Decision Conference, IEEE, Hefei, China, pp. 5267–5272, 2020. DOI: 10.1109/CCDC49329.2020.9164733.
    [17]
    J. Kong. Biometric identification based on two-layer feature fusion. Journal of Beihua University (Natural Science), vol. 21, no. 1, pp. 110–117, 2020. DOI: 10.11713/j.issn.1009-4822.2020.01.024. (in Chinese)
    [18]
    M. S. Madane, S. D. Thepade. Score level fusion based Multimodal biometric identification using Thepade′s sorted ternary block truncation coding with variod proportion of iris, palmprint, left fingerprint & right fingerprint with asorted similarity measures & different colorspaces. In Proceedings of International Conference on Automatic Control and Dynamic Optimization Techniques, IEEE, Pune, India, pp. 824–828, 2016. DOI: 10.1109/ICACDOT.2016.7877702.
    [19]
    K. Nandakumar, Y. Chen, S. C. Dass, A. Jain. Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 342–347, 2008. DOI: 10.1109/TPAMI.2007.70796.
    [20]
    H. A. Li, Z. M. Du, Z. L. Li, Q. J. Hui, J. H. Bai. Research on gait recognition algorithm based on double features using the layer matching fusion method. Journal of Graphics, vol. 40, no. 3, pp. 441–446, 2019. DOI: 10.11996/JG.j.2095-302X.2019030441. (in Chinese)
    [21]
    M. Eskandari, Ö. Toygar, H. Demirel. A new approach for face-iris multimodal biometric recognition using score fusion. International Journal of Pattern Recognition and Artificial Intelligence, vol. 27, no. 3, Article number 1356004, 2013. DOI: 10.1142/S0218001413560041.
    [22]
    L. Hong, A. Jain. Integrating faces and fingerprints for personal identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1295–1307, 1998. DOI: 10.1109/34.735803.
    [23]
    A. Jain, K. Nandakumar, A. Ross. Score normalization in multimodal biometric systems. Pattern Recognition, vol. 38, no. 12, pp. 2270–2285, 2005. DOI: 10.1016/j.patcog.2005.01.012.
    [24]
    F. Alsaade, A. M. Ariyaeeinia, A. S. Malegaonkar, M. Pawlewski, S. G. Pillay. Enhancement of multimodal biometric segregation using unconstrained cohort normalisation. Pattern Recognition, vol. 41, no. 3, pp. 814–820, 2008. DOI: 10.1016/j.patcog.2007.06.028.
    [25]
    Y. H. Wang, T. N. Tan, A. K. Jain. Combining face and iris biometrics for identity verification. In Proceedings of the 4th International Conferences on Audio-based and Video-based Biometric Person Authentication, Springer, Guildford, UK, pp. 805–813, 2003. DOI: 10.1007/3-540-44887-X_93.
    [26]
    S. Tulyakov, V. Govindaraju. Use of identification trial statistics for the combination of biometric matchers. IEEE Transactions on Information Forensics and Security, vol. 3, no. 4, pp. 719–733, 2008. DOI: 10.1109/TIFS.2008.2004287.
    [27]
    F. Wang, J. Han. Multimodal biometric authentication based on score level fusion using support vector machine. Opto-electronics Review, vol. 17, no. 1, pp. 59–64, 2009. DOI: 10.2478/s11772-008-0054-8.
    [28]
    M. Eskandari, Ö. Toygar. Fusion of face and iris biometrics using local and global feature extraction methods. Signal,Image and Video Processing, vol. 8, no. 6, pp. 995–1006, 2014. DOI: 10.1007/s11760-012-0411-4.
    [29]
    M. B. Yılmaz, B. Yanıkoğlu. Score level fusion of classifiers in off-line signature verification. Information Fusion, vol. 32, pp. 109–119, 2016. DOI: 10.1016/j.inffus.2016.02.003.
    [30]
    J. Aravinth, S. Valarmathy. Multi classifier-based score level fusion of multi-modal biometric recognition and its application to remote biometrics authentication. The Imaging Science Journal, vol. 64, no. 1, pp. 1–14, 2016. DOI: 10.1080/13682199.2015.1104067.
    [31]
    G. H. Supreetha, H. G. Kumar, M. Imran. Multimodal biometric verification system: Evaluation of various score level fusion rules. In Proceedings of IEEE International Conference on Electrical, Computer and Communication Technologies, Coimbatore, India, pp. 1–4, 2019. DOI: 10.1109/ICECCT.2019.8869429.
    [32]
    K. Nandakumar, A. K. Jain, A. Ross. Fusion in multibiometric identification systems: What about the missing data? In Proceedings of the 3rd International Conferences on Advances in Biometrics, Springer, Alghero, Italy, pp. 743–752, 2009. DOI: 10.1007/978-3-642-01793-3_76.
    [33]
    J. L. Peng, A. A. A. El-Latif, Q. Li, X. M. Niu. Multimodal biometric authentication based on score level fusion of finger biometrics. Optik, vol. 125, no. 23, pp. 6891–6897, 2014. DOI: 10.1016/j.ijleo.2014.07.027.
    [34]
    K. Su, G. P. Yang, B. Wu, L. Yang, D. F. Li, P. Su, Y. L. Yin. Human identification using finger vein and ECG signals. Neurocomputing, vol. 332, pp. 111–118, 2019. DOI: 10.1016/j.neucom.2018.12.015.
    [35]
    R. Snelick, U. Uludag, A. Mink, M. Indovina, A. Jain. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 450–455, 2005. DOI: 10.1109/TPAMI.2005.57.
    [36]
    CASIA database, 2016, [Online], Available: http://english.ia.cas.cn/db/201611/t20161101_169922.html, March 6, 2023.
    [37]
    Z. Zhu, G. Huang, J. Deng, et al. WebFace260M: A benchmark unveiling the power of million-scale deep face recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 10487–10497, 2021. DOI: 10.1109/CVPR46437.2021.01035.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (581) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return