Citation: | Zhuorong Li, Yunqi Tang. Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory. Machine Intelligence Research, vol. 20, no. 6, pp.884-896, 2023. https://doi.org/10.1007/s11633-022-1403-7 |
[1] |
J. A. Unar, W. C. Seng, A. Abbasi. A review of biometric technology along with trends and prospects. Pattern Recognition, vol. 47, no. 8, pp. 2673–2688, 2014. DOI: 10.1016/j.patcog.2014.01.016.
|
[2] |
Z. N. Sun, R. He, L. Wang, M. N. Kan, J. J. Feng, F. Zheng, W. S. Zheng, W. M. Zuo, W. X. Kang, W. H. Deng, J. Zhang, H. Han, S. G. Shan, Y. L. Wang, Y. W. Ru, Y. H. Zhu, Y. F. Liu, Y. He. Overview of biometrics research. Journal of Image and Graphics, vol. 26, no. 6, pp. 1254–1329, 2021. (in Chinese)
|
[3] |
L. Song, J. F. Yang, Q. Z. Shang, M. A. Li. Dense face network: A dense face detector based on global context and visual attention mechanism. Machine Intelligence Research, vol. 19, no. 3, pp. 247–256, 2022. DOI: 10.1007/s11633-022-1327-2.
|
[4] |
L. Y. Xu, Z. Gajic. Improved network for face recognition based on feature super resolution method. International Journal of Automation and Computing, vol. 18, no. 6, pp. 915–925, 2021. DOI: 10.1007/s11633-021-1309-9.
|
[5] |
M. Jacquet, C. Champod. Automated face recognition in forensic science: Review and perspectives. Forensic Science International, vol. 307, pp. 110–124, 2020. DOI: 10.1016/j.forsciint.2019.110124.
|
[6] |
L. Fei, B. Zhang, Y. Xu, C. Tian, D. Zhang. Jointly heterogeneous palmprint discriminant feature learning. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4979–4990, 2021. DOI: 10.1109/TNNLS.2021.3066381.
|
[7] |
R. Brunelli, D. Falavigna. Person identification using multiple cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 10, pp. 955–966, 1995. DOI: 10.1109/34.464560.
|
[8] |
E. S. Bigün, J. Bigün, B. Duc, S. Fischer. Expert conciliation for multi modal person authentication systems by Bayesian statistics. In Proceedings of the 1st International Conferences on Audio-based and Video-based Biometric Person Authentication, Springer, Crans-Montana, Switzerland, pp. 291–300, 1997. DOI: 10.1007/BFb0016008.
|
[9] |
P. Verlinde, G. Chollet. Combining vocal and visual cues in an identity verification system using K-NN based classifiers. In Proceedings of the 2nd IEEE Workshop on Multimedia Signal Processing, Redondo Beach, USA, pp. 59–64, 1998. DOI: 10.1109/MMSP.1998.738913.
|
[10] |
A. Ross, A. Jain. Information fusion in biometrics. Pattern Recognition Letters, vol. 24, no. 13, pp. 2115–2125, 2003. DOI: 10.1016/S0167-8655(03)00079-5.
|
[11] |
Y. L. Zhang, J. Yang, H. T. Wu, Y. F. Xue. Swipe fingerprint sequences mosaicking based on the extension of phase-correlation. Journal of Shanghai Jiaotong University, vol. 40, no. 3, pp. 471–475, 2006. DOI: 10.16183/j.cnki.jsjtu.2006.03.024. (in Chinese)
|
[12] |
J. G. Heo, S. G. Kong, B. R. Abidi, M. A. Abidi. Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In Proceedings of Conference on Computer Vision and Pattern Recognition Workshop, IEEE, Washington DC, USA, 2004. DOI: 10.1109/CVPR.2004.351.
|
[13] |
X. L. Ning, Z. X. Chen. Face panoramic image mosaic algorithm for face diagnosis. Chinese Journal of Medical Physics, vol. 37, no. 4, pp. 456–462, 2020. DOI: 10.3969/j.issn.1005-202X.2020.04.011. (in Chinese)
|
[14] |
D. Yaman, F. I. Eyiokur, H. K. Ekenel. Multimodal age and gender classification using ear and profile face images. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Long Beach, USA, pp. 2414–2421, 2019. DOI: 10.1109/CVPRW.2019.00296.
|
[15] |
A. Rattani, M. Tistarelli. Robust multi-modal and multi-unit feature level fusion of face and iris biometrics. In Proceedings of the 3rd International Conferences on Advances in Biometrics, Springer, Alghero, Italy, pp. 960–969, 2009. DOI: 10.1007/978-3-642-01793-3_97.
|
[16] |
Q. Hu, C. D. Wu, J. N. Chi, X. S. Yu, H. Wang. Multi-level feature fusion facial expression recognition network. In Proceedings of Chinese Control and Decision Conference, IEEE, Hefei, China, pp. 5267–5272, 2020. DOI: 10.1109/CCDC49329.2020.9164733.
|
[17] |
J. Kong. Biometric identification based on two-layer feature fusion. Journal of Beihua University (Natural Science), vol. 21, no. 1, pp. 110–117, 2020. DOI: 10.11713/j.issn.1009-4822.2020.01.024. (in Chinese)
|
[18] |
M. S. Madane, S. D. Thepade. Score level fusion based Multimodal biometric identification using Thepade′s sorted ternary block truncation coding with variod proportion of iris, palmprint, left fingerprint & right fingerprint with asorted similarity measures & different colorspaces. In Proceedings of International Conference on Automatic Control and Dynamic Optimization Techniques, IEEE, Pune, India, pp. 824–828, 2016. DOI: 10.1109/ICACDOT.2016.7877702.
|
[19] |
K. Nandakumar, Y. Chen, S. C. Dass, A. Jain. Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 342–347, 2008. DOI: 10.1109/TPAMI.2007.70796.
|
[20] |
H. A. Li, Z. M. Du, Z. L. Li, Q. J. Hui, J. H. Bai. Research on gait recognition algorithm based on double features using the layer matching fusion method. Journal of Graphics, vol. 40, no. 3, pp. 441–446, 2019. DOI: 10.11996/JG.j.2095-302X.2019030441. (in Chinese)
|
[21] |
M. Eskandari, Ö. Toygar, H. Demirel. A new approach for face-iris multimodal biometric recognition using score fusion. International Journal of Pattern Recognition and Artificial Intelligence, vol. 27, no. 3, Article number 1356004, 2013. DOI: 10.1142/S0218001413560041.
|
[22] |
L. Hong, A. Jain. Integrating faces and fingerprints for personal identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1295–1307, 1998. DOI: 10.1109/34.735803.
|
[23] |
A. Jain, K. Nandakumar, A. Ross. Score normalization in multimodal biometric systems. Pattern Recognition, vol. 38, no. 12, pp. 2270–2285, 2005. DOI: 10.1016/j.patcog.2005.01.012.
|
[24] |
F. Alsaade, A. M. Ariyaeeinia, A. S. Malegaonkar, M. Pawlewski, S. G. Pillay. Enhancement of multimodal biometric segregation using unconstrained cohort normalisation. Pattern Recognition, vol. 41, no. 3, pp. 814–820, 2008. DOI: 10.1016/j.patcog.2007.06.028.
|
[25] |
Y. H. Wang, T. N. Tan, A. K. Jain. Combining face and iris biometrics for identity verification. In Proceedings of the 4th International Conferences on Audio-based and Video-based Biometric Person Authentication, Springer, Guildford, UK, pp. 805–813, 2003. DOI: 10.1007/3-540-44887-X_93.
|
[26] |
S. Tulyakov, V. Govindaraju. Use of identification trial statistics for the combination of biometric matchers. IEEE Transactions on Information Forensics and Security, vol. 3, no. 4, pp. 719–733, 2008. DOI: 10.1109/TIFS.2008.2004287.
|
[27] |
F. Wang, J. Han. Multimodal biometric authentication based on score level fusion using support vector machine. Opto-electronics Review, vol. 17, no. 1, pp. 59–64, 2009. DOI: 10.2478/s11772-008-0054-8.
|
[28] |
M. Eskandari, Ö. Toygar. Fusion of face and iris biometrics using local and global feature extraction methods. Signal,Image and Video Processing, vol. 8, no. 6, pp. 995–1006, 2014. DOI: 10.1007/s11760-012-0411-4.
|
[29] |
M. B. Yılmaz, B. Yanıkoğlu. Score level fusion of classifiers in off-line signature verification. Information Fusion, vol. 32, pp. 109–119, 2016. DOI: 10.1016/j.inffus.2016.02.003.
|
[30] |
J. Aravinth, S. Valarmathy. Multi classifier-based score level fusion of multi-modal biometric recognition and its application to remote biometrics authentication. The Imaging Science Journal, vol. 64, no. 1, pp. 1–14, 2016. DOI: 10.1080/13682199.2015.1104067.
|
[31] |
G. H. Supreetha, H. G. Kumar, M. Imran. Multimodal biometric verification system: Evaluation of various score level fusion rules. In Proceedings of IEEE International Conference on Electrical, Computer and Communication Technologies, Coimbatore, India, pp. 1–4, 2019. DOI: 10.1109/ICECCT.2019.8869429.
|
[32] |
K. Nandakumar, A. K. Jain, A. Ross. Fusion in multibiometric identification systems: What about the missing data? In Proceedings of the 3rd International Conferences on Advances in Biometrics, Springer, Alghero, Italy, pp. 743–752, 2009. DOI: 10.1007/978-3-642-01793-3_76.
|
[33] |
J. L. Peng, A. A. A. El-Latif, Q. Li, X. M. Niu. Multimodal biometric authentication based on score level fusion of finger biometrics. Optik, vol. 125, no. 23, pp. 6891–6897, 2014. DOI: 10.1016/j.ijleo.2014.07.027.
|
[34] |
K. Su, G. P. Yang, B. Wu, L. Yang, D. F. Li, P. Su, Y. L. Yin. Human identification using finger vein and ECG signals. Neurocomputing, vol. 332, pp. 111–118, 2019. DOI: 10.1016/j.neucom.2018.12.015.
|
[35] |
R. Snelick, U. Uludag, A. Mink, M. Indovina, A. Jain. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 450–455, 2005. DOI: 10.1109/TPAMI.2005.57.
|
[36] |
CASIA database, 2016, [Online], Available: http://english.ia.cas.cn/db/201611/t20161101_169922.html, March 6, 2023.
|
[37] |
Z. Zhu, G. Huang, J. Deng, et al. WebFace260M: A benchmark unveiling the power of million-scale deep face recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 10487–10497, 2021. DOI: 10.1109/CVPR46437.2021.01035.
|