Citation: | Bin Fan, Yuchao Dai, Mingyi He. Rolling Shutter Camera: Modeling, Optimization and Learning. Machine Intelligence Research, vol. 20, no. 6, pp.783-798, 2023. https://doi.org/10.1007/s11633-022-1399-z |
[1] |
R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision, 2nd ed., Cambridge, UK: Cambridge University Press, 2003.
|
[2] |
Y. C. Dai, H. D. Li, L. Kneip. Rolling shutter camera relative pose: Generalized epipolar geometry. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 4132–4140, 2016. DOI: 10.1109/CVPR.2016.448.
|
[3] |
C. Albl, Z. Kukelova, T. Pajdla. R6P-rolling shutter absolute pose problem. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 2292–2300, 2015. DOI: 10.1109/CVPR.2015.7298842.
|
[4] |
Y. Z. Lao, O. Ait-Aider. Rolling shutter homography and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 8, pp. 2780–2793, 2021. DOI: 10.1109/TPAMI.2020.2977644.
|
[5] |
B. Fan, Y. C. Dai. Inverting a rolling shutter camera: Bring rolling shutter images to high framerate global shutter video. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 4208–4217, 2021. DOI: 10.1109/ICCV48922.2021.00419.
|
[6] |
B. B. Zhuang, Q. H. Tran, P. Ji, L. F. Cheong, M. Chandraker. Learning structure-and-motion-aware rolling shutter correction. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4546–4555, 2019. DOI: 10.1109/CVPR.2019.00468.
|
[7] |
Z. H. Zhong, M. D. Cao, X. Sun, Z. R. Wu, Z. Y. Zhou, Y. Q. Zheng, S. Lin, I. Sato. Bringing rolling shutter images alive with dual reversed distortion. In Proceedings of the 17th European Conference on Computer Vision, Springer, Tel Aviv, Israel, pp. 233–249, 2022. DOI: 10.1007/978-3-031-20071-7_14.
|
[8] |
Y. Z. Lao, O. Ait-Aider, A. Bartoli. Solving rolling shutter 3D vision problems using analogies with non-rigidity. International Journal of Computer Vision, vol. 129, no. 1, pp. 100–122, 2021. DOI: 10.1007/s11263-020-01368-1.
|
[9] |
J. H. Kim, C. Cadena, I. Reid. Direct semi-dense SLAM for rolling shutter cameras. In Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 1308–1315, 2016. DOI: 10.1109/ICRA.2016.7487263.
|
[10] |
D. Schubert, N. Demmel, L. von Stumberg, V. Usenko, D. Cremers. Rolling-shutter modelling for direct visual-inertial odometry. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Macau, China, pp. 2462–2469, 2019. DOI: 10.1109/IROS40897.2019.8968539.
|
[11] |
B. B. Zhuang, L. F. Cheong, G. H. Lee. Rolling-shutter-aware differential SfM and image rectification. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 948–956, 2017. DOI: 10.1109/ICCV.2017.108.
|
[12] |
O. Saurer, M. Pollefeys, G. H. Lee. Sparse to dense 3D reconstruction from rolling shutter images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 3337–3345, 2016. DOI: 10.1109/CVPR.2016.363.
|
[13] |
S. Im, H. Ha, G. Choe, H. G. Jeon, K. Joo, I. S. Kweon. Accurate 3D reconstruction from small motion clip for rolling shutter cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 4, pp. 775–787, 2019. DOI: 10.1109/TPAMI.2018.2819679.
|
[14] |
J. Hedborg, P. E. Forssen, M. Felsberg, E. Ringaby. Rolling shutter bundle adjustment. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 1434–1441, 2012. DOI: 10.1109/CVPR.2012.6247831.
|
[15] |
M. Meingast, C. Geyer, S. Sastry. Geometric models of rolling-shutter cameras, [Online], Available: https://arxiv.org/abs/0503076, 2005.
|
[16] |
B. Fan, Y. C. Dai, M. Y. He. SUNet: Symmetric undistortion network for rolling shutter correction. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 4521–4530, 2021. DOI: 10.1109/ICCV48922.2021.00450.
|
[17] |
O. Saurer, K. Köser, J. Y. Bouguet, M. Pollefeys. Rolling shutter stereo. In Proceedings of IEEE International Conference on Computer Vision, Sydney, Australia, pp. 465–472, 2013. DOI: 10.1109/ICCV.2013.64.
|
[18] |
O. Saurer, M. Pollefeys, G. H. Lee. A minimal solution to the rolling shutter pose estimation problem. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hamburg, Germany, pp. 1328–1334, 2015. DOI: 10.1109/IROS.2015.7353540.
|
[19] |
P. E. Forssén, E. Ringaby. Rectifying rolling shutter video from hand-held devices. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, pp. 507–514, 2010. DOI: 10.1109/CVPR.2010.5540173.
|
[20] |
V. Rengarajan, A. N. Rajagopalan, R. Aravind. From bows to arrows: Rolling shutter rectification of urban scenes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 2773–2781, 2016. DOI: 10.1109/CVPR.2016.303.
|
[21] |
L. Magerand, A. Bartoli, O. Ait-Aider, D. Pizarro. Global optimization of object pose and motion from a single rolling shutter image with automatic 2D-3D matching. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 456–469, 2012. DOI: 10.1007/978-3-642-33718-5_33.
|
[22] |
K. Wang, B. Fan, Y. C. Dai. Relative pose estimation for stereo rolling shutter cameras. In Proceedings of IEEE International Conference on Image Processing, Abu Dhabi, UAE, pp. 463–467, 2020. DOI: 10.1109/ICIP40778.2020.9191254.
|
[23] |
O. Ait-Aider, N. Andreff, J. M. Lavest, P. Martinet. Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In Proceedings of the 9th European Conference on Computer Vision, Springer, Graz, Austria, pp. 56–68, 2006. DOI: 10.1007/11744047_5.
|
[24] |
O. Ait-Aider, F. Berry. Structure and kinematics triangulation with a rolling shutter stereo rig. In Proceedings of the 12th International Conference on Computer Vision, IEEE, Kyoto, Japan, pp. 1835–1840, 2009. DOI: 10.1109/ICCV.2009.5459408.
|
[25] |
C. Albl, Z. Kukelova, T. Pajdla. Rolling shutter absolute pose problem with known vertical direction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 3355–3363, 2016. DOI: 10.1109/CVPR.2016.365.
|
[26] |
C. Albl, A. Sugimoto, T. Pajdla. Degeneracies in rolling shutter SfM. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 36–51, 2016. DOI: 10.1007/978-3-319-46454-1_3.
|
[27] |
Z. Kukelova, C. Albl, A. Sugimoto, T. Pajdla. Linear solution to the minimal absolute pose rolling shutter problem. In Proceedings of the 14th Asian Conference on Computer Vision, Springer, Perth, Australia, pp. 265–280, 2019. DOI: 10.1007/978-3-030-20893-6_17.
|
[28] |
C. Albl, Z. Kukelova, V. Larsson, T. Pajdla. Rolling shutter camera absolute pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 6, pp. 1439–1452, 2020. DOI: 10.1109/TPAMI.2019.2894395.
|
[29] |
Z. Kukelova, C. Albl, A. Sugimoto, K. Schindler, T. Pajdla. Minimal rolling shutter absolute pose with unknown focal length and radial distortion. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 698–714, 2020. DOI: 10.1007/978-3-030-58558-7_41.
|
[30] |
C. Albl, Z. Kukelova, V. Larsson, M. Polic, T. Pajdla, K. Schindler. From two rolling shutters to one global shutter. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 2502–2510, 2020. DOI: 10.1109/CVPR42600.2020.00258.
|
[31] |
K. Wang, C. H. Liu, K. X. Wang, S. J. Shen. Depth estimation under motion with single pair rolling shutter stereo images. IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3160–3167, 2021. DOI: 10.1109/LRA.2021.3063695.
|
[32] |
E. Ringaby, P. E. Forssén. Efficient video rectification and stabilisation for cell-phones. International Journal of Computer Vision, vol. 96, no. 3, pp. 335–352, 2012. DOI: 10.1007/s11263-011-0465-8.
|
[33] |
E. Ito, T. Okatani. Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 4512–4520, 2017. DOI: 10.1109/CVPR.2017.480.
|
[34] |
Y. Z. Lao, O. Ait-Aider. A robust method for strong rolling shutter effects correction using lines with automatic feature selection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 4795–4803, 2018. DOI: 10.1109/CVPR.2018.00504.
|
[35] |
P. Purkait, C. Zach. Minimal solvers for monocular rolling shutter compensation under ackermann motion. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, pp. 903–911, 2018. DOI: 10.1109/WACV.2018.00104.
|
[36] |
C. R. Lee, J. H. Yoon, M. G. Park, K. J. Yoon. Gyroscope-aided relative pose estimation for rolling shutter cameras, [Online], Available: https://arxiv.org/abs/1904.06770, 2019.
|
[37] |
J. Hedborg, E. Ringaby, P. E. Forssén, M. Felsberg. Structure and motion estimation from rolling shutter video. In Proceedings of IEEE International Conference on Computer Vision Workshops, Barcelona, Spain, pp. 17–23, 2011. DOI: 10.1109/ICCVW.2011.6130217.
|
[38] |
B. B. Zhuang, Q. H. Tran. Image stitching and rectification for hand-held cameras. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 243–260, 2020. DOI: 10.1007/978-3-030-58571-6_15.
|
[39] |
S. Im, H. Ha, G. Choe, H. G. Jeon, K. Joo, I. S. Kweon. High quality structure from small motion for rolling shutter cameras. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 837–845, 2015. DOI: 10.1109/ICCV.2015.102.
|
[40] |
B. Fan, Y. C. Dai, K. Wang. Rolling-shutter-stereo-aware motion estimation and image correction. Computer Vision and Image Understanding, vol. 213, Article number 103296, 2021. DOI: 10.1016/j.cviu.2021.103296.
|
[41] |
B. Fan, Y. C. Dai, Z. Y. Zhang, K. Wang. Differential SfM and image correction for a rolling shutter stereo rig. Image and Vision Computing, vol. 124, Article number 104492, 2022. DOI: 10.1016/j.imavis.2022.104492.
|
[42] |
Y. Z. Lao, O. Ait-Aider, H. Araujo. Robustified structure from Motion with rolling-shutter camera using straightness constraint. Pattern Recognition Letters, vol. 111, pp. 1–8, 2018. DOI: 10.1016/j.patrec.2018.04.004.
|
[43] |
B. Triggs, P. F. McLauchlan, R. I. Hartley, A. W. Fitzgibbon. Bundle adjustment − A modern synthesis. In Proceedings of the International Workshop on Vision Algorithms, Springer, Corfu, Greece, pp. 298–372, 2000. DOI: 10.1007/3-540-44480-7_21.
|
[44] |
L. Oth, P. Furgale, L. Kneip, R. Siegwart. Rolling shutter camera calibration. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 1360–1367, 2013. DOI: 10.1109/CVPR.2013.179.
|
[45] |
B. Y. Liao, D. L. Qu, Y. F. Xue, H. Q. Zhang, Y. Z. Lao. Revisiting rolling shutter bundle adjustment: Toward accurate and fast solution, [Online], Available: https://arxiv.org/abs/2209.08503, 2022.
|
[46] |
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, R. Szeliski. A database and evaluation methodology for optical flow. International Journal of Computer Vision, vol. 92, no. 1, pp. 1–31, 2011. DOI: 10.1007/s11263-010-0390-2.
|
[47] |
H. C. Longuet-Higgins, K. Prazdny. The interpretation of a moving retinal image. Proceedings of the Royal Society B:Biological Sciences, vol. 208, no. 1173, pp. 385–397, 1980. DOI: 10.1098/rspb.1980.0057.
|
[48] |
B. Fan, Y. C. Dai, Z. Y. Zhang, M. Y. He. Fast and robust differential relative pose estimation with radial distortion. IEEE Signal Processing Letters, vol. 29, pp. 294–298, 2022. DOI: 10.1109/LSP.2021.3134593.
|
[49] |
V. Rengarajan, Y. Balaji, A. N. Rajagopalan. Unrolling the shutter: CNN to correct motion distortions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 2345–2353, 2017. DOI: 10.1109/CVPR.2017.252.
|
[50] |
S. C. Su, W. Heidrich. Rolling shutter motion deblurring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 1529–1537, 2015. DOI: 10.1109/CVPR.2015.7298760.
|
[51] |
P. Purkait, C. Zach, A. Leonardis. Rolling shutter correction in Manhattan world. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 882–890, 2017. DOI: 10.1109/ICCV.2017.101.
|
[52] |
A. Patron-Perez, S. Lovegrove, G. Sibley. A spline-based trajectory representation for sensor fusion and rolling shutter cameras. International Journal of Computer Vision, vol. 113, no. 3, pp. 208–219, 2015. DOI: 10.1007/s11263-015-0811-3.
|
[53] |
C. Kerl, J. Stückler, D. Cremers. Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 2264–2272, 2015. DOI: 10.1109/ICCV.2015.261.
|
[54] |
F. Bai, A. Sengupta, A. Bartoli. Scanline homographies for rolling-shutter plane absolute pose. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 8983–8992, 2022. DOI: 10.1109/CVPR52688.2022.00879.
|
[55] |
B. Vandeportaele, P. A. Gohard, M. Devy, B. Coudrin. Pose interpolation for rolling shutter cameras using non uniformly time-sampled B-splines. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SciTePress, Porto, Portugal, pp. 286–293, 2017. DOI: 10.5220/0006171802860293.
|
[56] |
S. Lovegrove, A. Patron-Perez, G. Sibley. Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In Proceedings of the British Machine Vision Conference, BMVA Press, Bristol, UK, pp. 93.1–93.12, 2013. DOI: 10.5244/C.27.93.
|
[57] |
J. Mo, J. Islam, J. Sattar. Learning rolling shutter correction from real data without camera motion assumption, [Online], Available: https://arxiv.org/abs/2011.03106, 2020.
|
[58] |
J. Z. Huai, Y. K. Zhuang, Y. Lin, G. Jozkow, Q. C. Yuan, D. Chen. Continuous-time spatiotemporal calibration of a rolling shutter camera-IMU system. IEEE Sensors Journal, vol. 22, no. 8, pp. 7920–7930, 2022. DOI: 10.1109/JSEN.2022.3152572.
|
[59] |
X. L. Lang, J. J. Lv, J. X. Huang, Y. K. Ma, Y. Liu, X. X. Zuo. Ctrl-VIO: Continuous-time visual-inertial odometry for rolling shutter cameras. IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11537–11544, 2022. DOI: 10.1109/LRA.2022.3202349.
|
[60] |
E. B. Dam, M. Koch, M. Lillholm. Quaternions, Interpolation and Animation, Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 1998.
|
[61] |
C. H. Zhao, B. Fan, J. W. Hu, Q. Pan, Z. Xu. Homography-based camera pose estimation with known gravity direction for UAV navigation. Science China Information Sciences, vol. 64, no. 1, Article number 112204, 2021. DOI: 10.1007/s11432-019-2690-0.
|
[62] |
C. H. Zhao, B. Fan, J. W. Hu, L. M. Tian, Z. Y. Zhang, S. J. Li, Q. Pan. Pose estimation for multi-camera systems. In Proceedings of IEEE International Conference on Unmanned Systems, Beijing, China, pp. 533–538, 2017. DOI: 10.1109/ICUS.2017.8278403.
|
[63] |
S. C. Zhou, R. Yan, J. X. Li, Y. K. Chen, H. J. Tang. A brain-inspired SLAM system based on orb features. International Journal of Automation and Computing, vol. 14, no. 5, pp. 564–575, 2017. DOI: 10.1007/s11633-017-1090-y.
|
[64] |
C. L. Wang, T. M. Wang, J. H. Liang, Y. C. Zhang, Y. Zhou. Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments. International Journal of Automation and Computing, vol. 10, no. 5, pp. 387–396, 2013. DOI: 10.1007/s11633-013-0735-8.
|
[65] |
Y. Z. Lao, O. Ait-Aider, A. Bartoli. Rolling shutter pose and ego-motion estimation using shape-from-template. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 477–492, 2018. DOI: 10.1007/978-3-030-01216-8_29.
|
[66] |
O. Ait-Aider, A. Bartoli, N. Andreff. Kinematics from lines in a single rolling shutter image. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007. DOI: 10.1109/CVPR.2007.383119.
|
[67] |
R. M. Haralick, D. Lee, K. Ottenburg, M. Nolle. Analysis and solutions of the three point perspective pose estimation problem. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Maui, USA, pp. 592–598, 1991. DOI: 10.1109/CVPR.1991.139759.
|
[68] |
M. Panda, B. Das, B. Subudhi, B. B. Pati. A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, vol. 17, no. 3, pp. 321–352, 2020. DOI: 10.1007/s11633-019-1204-9.
|
[69] |
Y. Yang, F. Qiu, H. Li, L. Zhang, M. L. Wang, M. Y. Fu. Large-scale 3D semantic mapping using stereo vision. International Journal of Automation and Computing, vol. 15, no. 2, pp. 194–206, 2018. DOI: 10.1007/s11633-018-1118-y.
|
[70] |
Q. Qi, Q. D. Li, Y. Q. Cheng, Q. Q. Hong. Skeleton marching-based parallel vascular geometry reconstruction using implicit functions. International Journal of Automation and Computing, vol. 17, no. 1, pp. 30–43, 2020. DOI: 10.1007/s11633-019-1189-4.
|
[71] |
B. Fan, K. Wang, Y. C. Dai, M. Y. He. RS-DPSNet: Deep plane sweep network for rolling shutter stereo images. IEEE Signal Processing Letters, vol. 28, pp. 1550–1554, 2021. DOI: 10.1109/LSP.2021.3099350.
|
[72] |
P. D. Liu, Z. P. Cui, V. Larsson, M. Pollefeys. Deep shutter unrolling network. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 5940–5948, 2020. DOI: 10.1109/CVPR42600.2020.00598.
|
[73] |
S. Vasu, M. R. M. Mohan, A. N. Rajagopalan. Occlusion-aware rolling shutter rectification of 3D scenes. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 636–645, 2018. DOI: 10.1109/CVPR.2018.00073.
|
[74] |
H. C. Wu, L. Xiao, Z. H. Wei. Simultaneous video stabilization and rolling shutter removal. IEEE Transactions on Image Processing, vol. 30, pp. 4637–4652, 2021. DOI: 10.1109/TIP.2021.3073865.
|
[75] |
Z. H. Zhong, Y. Q. Zheng, I. Sato. Towards rolling shutter correction and deblurring in dynamic scenes. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 9215–9224, 2021. DOI: 10.1109/CVPR46437.2021.00910.
|
[76] |
K. Praveen, T Lokesh Kumar, A. N. Rajagopalan. Deep network for rolling shutter rectification, [Online], Available: https://arxiv.org/abs/2112.06170, 2021.
|
[77] |
B. Fan, Y. C. Dai, Z. Y. Zhang, Q. Liu, M. Y. He. Context-aware video reconstruction for rolling shutter cameras. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 17551–17561, 2022. DOI: 10.1109/CVPR52688.2022.01705.
|
[78] |
B. Fan, Y. C. Dai, H. D. Li. Rolling shutter inversion: Bring rolling shutter images to high framerate global shutter video. IEEE Transactions on Pattern Analysis and Machine Intelligence, to be published. DOI: 10.1109/TPAMI.2022.3212912.
|
[79] |
M. D. Cao, Z. H. Zhong, J. H. Wang, Y. Q. Zheng, Y. J. Yang. Learning adaptive warping for real world rolling shutter correction. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 17764–17772, 2022. DOI: 10.1109/CVPR52688.2022.01726.
|
[80] |
C. K. Liang, L. W. Chang, H. H. Chen. Analysis and compensation of rolling shutter effect. IEEE Transactions on Image Processing, vol. 17, no. 8, pp. 1323–1330, 2008. DOI: 10.1109/TIP.2008.925384.
|
[81] |
S. Baker, E. Bennett, S. B. Kang, R. Szeliski. Removing rolling shutter wobble. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, pp. 2392–2399, 2010. DOI: 10.1109/CVPR.2010.5539932.
|
[82] |
M. Grundmann, V. Kwatra, D. Castro, I. Essa. Calibration-free rolling shutter removal. In Proceedings of IEEE International Conference on Computational Photography, Seattle, USA, pp. 1–8, 2012. DOI: 10.1109/ICCPhot.2012.6215213.
|
[83] |
A. Punnappurath, V. Rengarajan, A. N. Rajagopalan. Rolling shutter super-resolution. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 558–566, 2015. DOI: 10.1109/ICCV.2015.71.
|
[84] |
M. Meilland, T. Drummond, A. I. Comport. A unified rolling shutter and motion blur model for 3D visual registration. In Proceedings of IEEE International Conference on Computer Vision, Sydney, Australia, pp. 2016–2023, 2013. DOI: 10.1109/ICCV.2013.252.
|
[85] |
J. Park, K. Ko, C. Lee, C. S. Kim. BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 109–125, 2020. DOI: 10.1007/978-3-030-58568-6_7.
|
[86] |
W. B. Bao, W. S. Lai, C. Ma, X. Y. Zhang, Z. Y. Gao, M. H. Yang. Depth-aware video frame interpolation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 3698–3707, 2019. DOI: 10.1109/CVPR.2019.00382.
|
[87] |
R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 586–595, 2018. DOI: 10.1109/CVPR.2018.00068.
|
[88] |
A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, V. Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, USA, vol. 78, pp. 1–16, 2017.
|
[89] |
Z. X. Wang, X. Ji, J. B. Huang, S. Satoh, X. Zhou, Y. Q. Zheng. Neural global shutter: Learn to restore video from a rolling shutter camera with global reset feature. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 17773–17782, 2022. DOI: 10.1109/CVPR52688.2022.01727.
|
[90] |
X. Y. Zhou, P. Q. Duan, Y. Ma, B. X. Shi. EvUnroll: Neuromorphic events based rolling shutter image correction. In Proceedings of IEEE/CVF conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 17754–17763, 2022. DOI: 10.1109/CVPR52688.2022.01725.
|
[91] |
Y. H. Hu, S. C. Liu, T. Delbruck. V2E: From video frames to realistic DVS events. In Proceedings of IEEE/CVF conference on Computer Vision and Pattern Recognition Workshops, IEEE, Nashville, USA, pp. 1312–1321, 2021. DOI: 10.1109/CVPRW53098.2021.00144.
|
[92] |
J. H. Kim, Y. Latif, I. Reid. RRD-SLAM: Radial-distorted rolling-shutter direct SLAM. In Proceedings of IEEE International Conference on Robotics and Automation, Singapore, pp. 5148–5154, 2017. DOI: 10.1109/ICRA.2017.7989602.
|
[93] |
D. Schubert, N. Demmel, V. Usenko, J. Stückler, D. Cremers. Direct sparse odometry with rolling shutter. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 699–714, 2018. DOI: 10.1007/978-3-030-01237-3_42.
|
[94] |
J. Mo, J. Islam, J. Sattar. IMU-assisted learning of single-view rolling shutter correction. In Proceedings of the Conference on Robot Learning, London, UK, vol. 164, pp. 861–870, 2021.
|
[95] |
S. Tourani, S. Mittal, A. Nagariya, V. Chari, M. Krishna. Rolling shutter and motion blur removal for depth cameras. In Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 5098–5105, 2016. DOI: 10.1109/ICRA.2016.7487715.
|