Citation: | Yuchi Liu, Zhongdao Wang, Xiangxin Zhou, Liang Zheng. A Study of Using Synthetic Data for Effective Association Knowledge Learning. Machine Intelligence Research, vol. 20, no. 2, pp.194-206, 2023. https://doi.org/10.1007/s11633-022-1380-x |
[1] |
G. Brasó, L. Leal-Taixé. Learning a neural solver for multiple object tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6246–6256, 2020. DOI: 10.1109/CVPR42600.2020.00628.
|
[2] |
Y. H. Xu, A. Ŝep, Y. T. Ban, R. Horaud, L. Leal-Taixé, X. Alameda-Pineda. How to train your deep multi-object tracker. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6786–6795, 2020. DOI: 10.1109/CVPR42600.2020.00682.
|
[3] |
L. Leal-Taixé, A. Milan, I. Reid, S. Roth, K. Schindler. MOTChallenge 2015: Towards a benchmark for multi-target tracking. [Online], Available: https://arxiv.org/abs/1504.01942, 2015.
|
[4] |
A. Milan, L. Leal-Taixé, I. Reid, S. Roth, K. Schindler. MOT16: A benchmark for multi-object tracking. [Online], Available: https://arxiv.org/abs/1603.00831, 2016.
|
[5] |
S. Bąk, P. Carr, J. F. Lalonde. Domain adaptation through synthesis for unsupervised person re-identification. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 193–209, 2018. DOI: 10.1007/978-3-030-01261-8_12.
|
[6] |
H. Z. Dou, W. H. Zhang, P. Z. Zhang, Y. H. Zhao, S. Y. Li, Z. Q. Qin, F. Wu, L. Dong, X. Li. VersatileGait: A large-scale synthetic gait dataset with fine-grained attributes and complicated scenarios. [Online], Available: https://arxiv.org/abs/2101.01394, 2021.
|
[7] |
Z. F. Xue, W. J. Mao, L. Zheng. Learning to simulate complex scenes. [Online], Available: https://arxiv.org/abs/2006.14611, 2020.
|
[8] |
Y. Yao, L. Zheng, X. D. Yang, M. Naphade, T. Gedeon. Simulating content consistent vehicle datasets with attribute descent. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 775–791, 2020. DOI: 10.1007/978-3-030-58539-6_46.
|
[9] |
J. H. Li, X. Gao, T. T. Jiang. Graph networks for multiple object tracking. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, pp. 708–717, 2020. DOI: 10.1109/WACV45572.2020.9093347.
|
[10] |
Z. D. Wang, L. Zheng, Y. X. Liu, Y. L. Li, S. J. Wang. Towards real-time multi-object tracking. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 107–122, 2020. DOI: 10.1007/978-3-030-58621-8_7.
|
[11] |
N. Wojke, A. Bewley, D. Paulus. Simple online and realtime tracking with a deep association metric. In Proceedings of IEEE International Conference on Image Processing, Beijing, China, pp. 3645–3649, 2017. DOI: 10.1109/ICIP.2017.8296962.
|
[12] |
Y. F. Zhan, C. Y. Wang, X. G. Wang, W. J. Zeng, W. Y. Liu. A simple baseline for multi-object tracking. [Online], Available: https://arxiv.org/abs/2004.01888v1, 2020.
|
[13] |
Z. W. Zhou, J. L. Xing, M. D. Zhang, W. M. Hu. Online multi-target tracking with tensor-based high-order graph matching. In Proceedings of the 24th International Conference on Pattern Recognition, IEEE, Beijing, China, pp. 1809–1814, 2018. DOI: 10.1109/ICPR.2018.8545450.
|
[14] |
J. Zhu, H. Yang, N. Liu, M. Kim, W. J. Zhang, M. H. Yang. Online multi-object tracking with dual matching attention networks. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 379–396, 2018. DOI: 10.1007/978-3-030-01228-1_23.
|
[15] |
Q. C. Wang, Y. H. Gong, C. H. Yang, C. H. Li. Robust object tracking under appearance change conditions. International Journal of Automation and Computing, vol. 7, no. 1, pp. 31–38, 2010. DOI: 10.1007/s11633-010-0031-9.
|
[16] |
H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, vol. 2, no. 1–2, pp. 83–97, 1955. DOI: 10.1002/nav.3800020109.
|
[17] |
G. Welch, G. Bishop. An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill, Chapel Hill, USA, 1995.
|
[18] |
I. Papakis, A. Sarkar, A. Karpatne. GCNNMatch: Graph convolutional neural networks for multi-object tracking via Sinkhorn normalization. [Online], Available: https://arxiv.org/abs/2010.00067, 2020.
|
[19] |
X. C. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Q. Wang, K. Saenko. VisDA: The visual domain adaptation challenge. [Online], Available: https://arxiv.org/abs/1710.06924, 2017.
|
[20] |
X. C. Peng, B. Usman, N. Kaushik, D. Q. Wang, J. Hoffman, K. Saenko. VisDA: A synthetic-to-real benchmark for visual domain adaptation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Salt Lake City, USA, pp. 2021–2026, 2018. DOI: 10.1109/CVPRW.2018.00271.
|
[21] |
Y. Cabon, N. Murray, M. Humenberger. Virtual KITTI 2. [Online], Available: https://arxiv.org/abs/2001.10773, 2020.
|
[22] |
A. Gaidon, Q. Wang, Y. Cabon, E. Vig. Virtual Worlds as proxy for multi-object tracking analysis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 4340–4349, 2016. DOI: 10.1109/CVPR.2016.470.
|
[23] |
Y. Z. Hou, L. Zheng, S. Gould. Multiview detection with feature perspective transformation. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 1–18, 2020. DOI: 10.1007/978-3-030-58571-6_1.
|
[24] |
M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, R. Cucchiara. Learning to detect and track visible and occluded body joints in a virtual world. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 450–456, 2018. DOI: 10.1007/978-3-030-01225-0_27.
|
[25] |
S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, R. Chellappa. Learning from synthetic data: Addressing domain shift for semantic segmentation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3752–3761, 2018. DOI: 10.1109/CVPR.2018.00395.
|
[26] |
C. Doersch, A. Zisserman. Sim2real transfer learning for 3D human pose estimation: Motion to the rescue. In Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
|
[27] |
E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani, D. Gordon, Y. K. Zhu, A. Kembhavi, A. Gupta, A. Farhadi. AI2-THOR: An interactive 3D environment for visual AI. [Online], Available: https://arxiv.org/abs/1712.05474, 2017.
|
[28] |
A. Kar, A. Prakash, M. Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna, A. Torralba, S. Fidler. Meta-Sim: Learning to generate synthetic datasets. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Republic of Korea, pp. 4550–4559, 2019. DOI: 10.1109/ICCV.2019.00465.
|
[29] |
A. Juliani, V. P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry, M. Mattar, D. Lange. Unity: A general platform for intelligent agents. [Online], Available: https://arxiv.org/abs/1809.02627, 2018.
|
[30] |
X. X. Sun, L. Zheng. Dissecting person re-identification from the viewpoint of viewpoint. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 608–617, 2019. DOI: 10.1109/CVPR.2019.00070.
|
[31] |
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009. DOI: 10.1109/TNN.2008.2005605.
|
[32] |
A. Bewley, Z. Y. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In Proceedings of IEEE International Conference on Image Processing, Phoenix, USA, pp. 3464–3468, 2016. DOI: 10.1109/ICIP.2016.7533003.
|
[33] |
Y. H. Du, Y. Song, B. Yang, Y. Y. Zhao. StrongSORT: Make deepSORT great again. [Online], Available: https://arxiv.org/abs/2202.13514, 2022.
|
[34] |
K. Bernardin, R. Stiefelhagen. Evaluating multiple object tracking performance: The clear mot metrics. EURASIP Journal on Image and Video Processing, vol. 2008, Article number 246309, 2008.
|
[35] |
P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, L. Leal-Taixé. MOT20: A benchmark for multi object tracking in crowded scenes. [Online], Available: https://arxiv.org/abs/2003.09003. 2020.
|
[36] |
W. J. Deng, L. Zheng, Q. X. Ye, G. L. Kang, Y. Yang, J. B. Jiao. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 994–1003, 2018. DOI: 10.1109/CVPR.2018.00110.
|