Citation: | Qian Cai, Guo-Chong Cui, Hai-Xian Wang. EEG-based Emotion Recognition Using Multiple Kernel Learning. Machine Intelligence Research, vol. 19, no. 5, pp.472-484, 2022. https://doi.org/10.1007/s11633-022-1352-1 |
[1] |
R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, J. G. Taylor. Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, vol. 18, no. 1, pp. 32–80, 2001. DOI: 10.1109/79.911197.
|
[2] |
N. Mehendale. Facial emotion recognition using convolutional neural networks (FERC). SN Applied Sciences, vol. 2, no. 3, Article number 446, 2020. DOI: 10.1007/s42452-020-2234-1.
|
[3] |
S. Minaee, M. Minaei, A. Abdolrashidi. Deep-emotion: Facial expression recognition using attentional convolutional network. Sensors, vol. 21, no. 9, Article number 3046, 2021. DOI: 10.3390/s21093046.
|
[4] |
D. M. Schuller, B. W. Schuller. A review on five recent and near-future developments in computational processing of emotion in the human voice. Emotion Review, vol. 13, no. 1, pp. 44–50, 2021. DOI: 10.1177/1754073919898526.
|
[5] |
Y. M. Huang, K. X. Tian, A. Wu, G. B. Zhang. Feature fusion methods research based on deep belief networks for speech emotion recognition under noise condition. Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 5, pp. 1787–1798, 2019. DOI: 10.1007/s12652-017-0644-8.
|
[6] |
J. H. Tao, J. Huang, Y. Li, Z. Lian, M. Y. Niu. Correction to: Semi-supervised ladder networks for speech emotion recognition. International Journal of Automation and Computing, vol. 18, no. 4, Article number 680, 2021. DOI: 10.1007/s11633-019-1215-6.
|
[7] |
Y. Q. Yin, X. W. Zheng, B. Hu, Y. Zhang, X. C. Cui. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Applied Soft Computing, vol. 100, Article number 106954, 2021. DOI: 10.1016/j.asoc.2020.106954.
|
[8] |
P. Sarkar, A. Etemad. Self-supervised learning for ecg-based emotion recognition. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Barcelona, Spain, pp. 3217–3221, 2020. DOI: 10.1109/ICASSP40776.2020.9053985.
|
[9] |
V. Kehri, R. Ingle, S. Patil, R. N. Awale. Analysis of facial EMG signal for emotion recognition using wavelet packet transform and SVM. Machine Intelligence and Signal Analysis, M. Tanveer, R. B. Pachori, Eds., Singapore: Springer, pp. 247–257, 2019. DOI: 10.1007/978-981-13-0923-6_21.
|
[10] |
Q. Zhang, X. X. Chen, Q. Y. Zhan, T. Yang, S. H. Xia. Respiration-based emotion recognition with deep learning. Computers in Industry, vol. 92–93, pp. 84–90, 2017. DOI: 10.1016/j.compind.2017.04.005.
|
[11] |
L. Shu, Y. Yu, W. Z. Chen, H. Q. Hua, Q. Li, J. X. Jin, X. M. Xu. Wearable emotion recognition using heart rate data from a smart bracelet. Sensors, vol. 20, no. 3, Article number 718, 2020. DOI: 10.3390/s20030718.
|
[12] |
D. Ayata, Y. Yaslan, M. Kamaşak. Emotion recognition via random forest and galvanic skin response: Comparison of time based feature sets, window sizes and wavelet approaches. In Proceedings of Medical Technologies National Congress, IEEE, Antalya, Turkey, 2016. DOI: 10.1109/TIPTEKNO.2016.7863130.
|
[13] |
S. Huang, W. Shao, M. L. Wang, D. Q. Zhang. fMRI-based decoding of visual information from human brain activity: A brief review. International Journal of Automation and Computing, vol. 18, no. 2, pp. 170–184, 2021. DOI: 10.1007/s11633-020-1263-y.
|
[14] |
L. M. Ward. Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, vol. 7, no. 12, pp. 553–559, 2003. DOI: 10.1016/j.tics.2003.10.012.
|
[15] |
J. A. Coan, J. J. B. Allen. Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, vol. 67, no. 1–2, pp. 7–50, 2004. DOI: 10.1016/j.biopsycho.2004.03.002.
|
[16] |
J. Jin, Z. M. Chen, R. Xu, Y. Y. Miao, X. Y. Wang, T. P. Jung. Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm. IEEE Transactions on Biomedical Engineering, vol. 67, no. 9, pp. 2585–2593, 2020. DOI: 10.1109/TBME.2020.2965178.
|
[17] |
Y. Yu, Y. D. Liu, E. W. Yin, J. Jiang, Z. T. Zhou, D. W. Hu. An asynchronous hybrid spelling approach based on EEG-EOG signals for Chinese character input. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 6, pp. 1292–1302, 2019. DOI: 10.1109/TNSRE.2019.2914916.
|
[18] |
Z. Mohammadi, J. Frounchi, M. Amiri. Wavelet-based emotion recognition system using EEG signal. Neural Computing and Applications, vol. 28, no. 8, pp. 1985–1990, 2017. DOI: 10.1007/s00521-015-2149-8.
|
[19] |
M. Degirmenci, M. A. Ozdemir, R. Sadighzadeh, A. Akan. Emotion recognition from EEG signals by using empirical mode decomposition. In Proceedings of Medical Technologies National Congress, IEEE, Magusa, Cyprus, 2018. DOI: 10.1109/TIPTEKNO.2018.8597061.
|
[20] |
Z. Yin, L. Liu, J. N. Chen, B. X. Zhao, Y. X. Wang. Locally robust EEG feature selection for individual-independent emotion recognition. Expert Systems with Applications, vol. 162, Article number 113768, 2020. DOI: 10.1016/j.eswa.2020.113768.
|
[21] |
T. F. Song, W. M. Zheng, P. Song, Z. Cui. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Transactions on Affective Computing, vol. 11, no. 3, pp. 532–541, 2020. DOI: 10.1109/TAFFC.2018.2817622.
|
[22] |
H. Chao, L. Dong, Y. L. Liu, B. Y. Lu. Emotion recognition from multiband EEG signals using CapsNet. Sensors, vol. 19, no. 9, Article number 2212, 2019. DOI: 10.3390/s19092212.
|
[23] |
Y. Cimtay, E. Ekmekcioglu. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors, vol. 20, no. 7, Article number 2034, 2020. DOI: 10.3390/s20072034.
|
[24] |
E. Iáñez, J. M. Azorín, A. Úbeda, E. Fernández, J. L. Sirvent. LDA-based classifiers for a mental tasks-based brain-computer interface. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, pp. 546–551, 2010. DOI: 10.1109/ICSMC.2010.5642018.
|
[25] |
L. Guo, Y. X. Wu, L. Zhao, T. Cao, W. L. Yan, X. Q. Shen. Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 866–869, 2011. DOI: 10.1109/TMAG.2010.2072775.
|
[26] |
M. J. Abdi, S. M. Hosseini, M. Rezghi. A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Computational and Mathematical Methods in Medicine, vol. 2012, Article number 320698, 2012. DOI: 10.1155/2012/320698.
|
[27] |
A. Rakotomamonjy, F. R. Bach, S. Canu, Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.
|
[28] |
M. Varma, B. R. Babu. More generality in efficient multiple kernel learning. In Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada, pp. 1065–1072, 2009. DOI: 10.1145/1553374.1553510.
|
[29] |
M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien. Non-sparse regularization and efficient training with multiple kernels. [Online], Available: https://arxiv.org/abs/1003.0079v1, 2010.
|
[30] |
Z. L. Xu, R. Jin, H. Q. Yang, I. King, M. R. Lyu. Simple and efficient multiple kernel learning by group lasso. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, pp. 1175–1182, 2010.
|
[31] |
F. Aiolli, M. Donini. EasyMKL: A scalable multiple kernel learning algorithm. Neurocomputing, vol. 169, pp. 215–224, 2015. DOI: 10.1016/j.neucom.2014.11.078.
|
[32] |
W. Samek, A. Binder, K. R. Müller. Multiple kernel learning for brain-computer interfacing. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Osaka, Japan, pp. 7048–7051, 2013. DOI: 10.1109/EMBC.2013.6611181.
|
[33] |
X. O. Li, X. Chen, Y. N. Yan, W. S. Wei, Z. J. Wang. Classification of EEG signals using a multiple kernel learning support vector machine. Sensors, vol. 14, no. 7, pp. 12784–12802, 2014. DOI: 10.3390/s140712784.
|
[34] |
C. A. Frantzidis, C. Bratsas, C. L. Papadelis, E. Konstantinidis, C. Pappas, P. D. Bamidis. Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 3, pp. 589–597, 2010. DOI: 10.1109/TITB.2010.2041553.
|
[35] |
P. J. Lang, M. M. Bradley, B. N. Cuthbert. International Affective Picture System (IAPS): Technical Manual and Affective Ratings, Technical Report No. 3, NIMH Center for the Study of Emotion and Attention, USA, pp. 39–58, 1997.
|
[36] |
R. N. Duan, J. Y. Zhu, B. L. Lu. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering, IEEE, San Diego, USA, pp. 81–84, 2013. DOI: 10.1109/NER.2013.6695876.
|
[37] |
W. L. Zheng, B. L. Lu. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on Autonomous Mental Development, vol. 7, no. 3, pp. 162–175, 2015. DOI: 10.1109/TAMD.2015.2431497.
|
[38] |
S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, I. Patras. DEAP: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012. DOI: 10.1109/T-AFFC.2011.15.
|
[39] |
X. Chen, X. Y. Xu, A. P. Liu, S. Lee, X. Chen, X. Zhang, M. J. McKeown, Z. J. Wang. Removal of muscle artifacts from the EEG: A review and recommendations. IEEE Sensors Journal, vol. 19, no. 14, pp. 5353–5368, 2019. DOI: 10.1109/JSEN.2019.2906572.
|
[40] |
R. Jenke, A. Peer, M. Buss. Feature extraction and selection for emotion recognition from EEG. IEEE Transactions on Affective Computing, vol. 5, no. 3, pp. 327–339, 2014. DOI: 10.1109/TAFFC.2014.2339834.
|
[41] |
C. Zhang, H. Wang, R. R. Fu. Automated detection of driver fatigue based on entropy and complexity measures. IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 168–177, 2014. DOI: 10.1109/TITS.2013.2275192.
|
[42] |
V. S. Vijith, J. E. Jacob, T. Iype, K. Gopakumar, D. G. Yohannan. Epileptic seizure detection using non linear analysis of EEG. In Proceedings of International Conference on Inventive Computation Technologies, IEEE, Coimbatore, India, 2016. DOI: 10.1109/INVENTIVE.2016.7830193.
|
[43] |
R. C. Guido. A tutorial review on entropy-based handcrafted feature extraction for information fusion. Information Fusion, vol. 41, pp. 161–175, 2018. DOI: 10.1016/j.inffus.2017.09.006.
|
[44] |
K. H. Kim, S. W. Bang, S. R. Kim. Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, vol. 42, no. 3, pp. 419–427, 2004. DOI: 10.1007/BF02344719.
|
[45] |
X. W. Wang, D. Nie, B. L. Lu. Emotional state classification from EEG data using machine learning approach. Neurocomputing, vol. 129, pp. 94–106, 2014. DOI: 10.1016/j.neucom.2013.06.046.
|
[46] |
K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181–201, 2001. DOI: 10.1109/72.914517.
|
[47] |
X. Chen, Z. J. Wang. Pattern recognition of number gestures based on a wireless surface EMG system. Biomedical Signal Processing and Control, vol. 8, no. 2, pp. 184–192, 2013. DOI: 10.1016/j.bspc.2012.08.005.
|
[48] |
C. M. Qing, R. Qiao, X. M. Xu, Y. Q. Cheng. Interpretable emotion recognition using EEG signals. IEEE Access, vol. 7, pp. 94160–94170, 2019. DOI: 10.1109/ACCESS.2019.2928691.
|
[49] |
L. C. Shi, Y. Y. Jiao, B. L. Lu. Differential entropy feature for EEG-based vigilance estimation. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Osaka, Japan, pp. 6627–6630, 2013. DOI: 10.1109/EMBC.2013.6611075.
|
[50] |
M. Soleymani, M. Pantic, T. Pun. Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing, vol. 3, no. 2, pp. 211–223, 2012. DOI: 10.1109/T-AFFC.2011.37.
|
[51] |
W. L. Zheng, J. Y. Zhu, B. L. Lu. Identifying stable patterns over time for emotion recognition from EEG. IEEE Transactions on Affective Computing, vol. 10, no. 3, pp. 417–429, 2019. DOI: 10.1109/TAFFC.2017.2712143.
|