Citation: | Ling-Huan Kong, Wei He, Wen-Shi Chen, Hui Zhang, Yao-Nan Wang. Dynamic Movement Primitives Based Robot Skills Learning. Machine Intelligence Research, vol. 20, no. 3, pp.396-407, 2023. https://doi.org/10.1007/s11633-022-1346-z |
[1] |
Q. Fu, X. Q. Wang, Y. Zou, W. He. A miniature video stabilization system for? Apping-wing aerial vehicles. Guidance,Navigation and Control, vol. 2, no. 1, Article number 2250001, 2022. DOI: 10.1142/S2737480722500017.
|
[2] |
H. Qiao, M. Wang, J. H. Su, S. X. Jia, R. Li. The concept of “attractive region in environment” and its application in high-precision tasks with low-precision systems. IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2311–2327, 2015. DOI: 10.1109/TMECH.2014.2375638.
|
[3] |
Z. J. Li, B. Huang, A. Ajoudani, C. G. Yang, C. Y. Su, A. Bicchi. Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Transactions on Robotics, vol. 34, no. 1, pp. 264–271, 2018. DOI: 10.1109/TRO.2017.2765334.
|
[4] |
L. Li, Z. Y. Chen, Y. B. Wang, X. D. Zhang, N. F. Wang. Robust task-space tracking for free-floating space manipulators by cerebellar model articulation controller. Assembly Automation, vol. 39, no. 1, pp. 26–33, 2019. DOI: 10.1108/AA-11-2017-143.
|
[5] |
M. Bortolini, M. Faccio, F. G. Galizia, M. Gamberi, F. Pilati. Design, engineering and testing of an innovative adaptive automation assembly system. Assembly Automation, vol. 40, no. 3, pp. 531–540, 2020. DOI: 10.1108/AA-06-2019-0103.
|
[6] |
X. B. Yu, W. He, Y. A. Li, C. Q. Xue, Y. K. Sun, Y. Wang. Adaptive NN impedance control for an SEA-driven robot. Science China Information Sciences, vol. 63, no. 5, Article number 159207, 2020. DOI: 10.1007/s11432-018-9631-7.
|
[7] |
C. Zeng, C. G. Yang, Z. P. Chen. Bio-inspired robotic impedance adaptation for human-robot collaborative tasks. Science China Information Sciences, vol. 63, no. 7, Article number 170201, 2020. DOI: 10.1007/s11432-019-2748-x.
|
[8] |
L. Kunze, N. Hawes, T. Duckett, M. Hanheide, T. Krajník. Artificial intelligence for long-term robot autonomy: A survey. IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4023–4030, 2018. DOI: 10.1109/LRA.2018.2860628.
|
[9] |
Y. Gigras, K. Gupta. Artificial intelligence in robot path planning. International Journal of Soft Computing and Engineering, vol. 2, no. 2, pp. 2231–2307, 2012.
|
[10] |
W. He, Z. J. Li, C. L. P. Chen. A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp. 602–609, 2017. DOI: 10.1109/JAS.2017.7510604.
|
[11] |
Y. Y. Qi, J. C. Liu, J. Z. Yu. Dynamic modeling and hybrid fireworks algorithm-based path planning of an amphibious robot. Guidance,Navigation and Control, vol. 2, no. 1, Article number 2250002, 2022. DOI: 10.1142/S2737480722500029.
|
[12] |
Z. J. Li, X. Li, Q. J. Li, H. Su, Z. Kan, W. He. Human-in-the-loop control of soft exosuits using impedance learning on different terrains. IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2979–2993, 2022. DOI: 10.1109/TRO.2022.3160052.
|
[13] |
Y. M. Jiang, Y. N. Wang, Z. Q. Miao, J. Na, Z. J. Zhao, C. G. Yang. Composite-learning-based adaptive neural control for dual-arm robots with relative motion. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 3, pp. 1010–1021, 2022. DOI: 10.1109/TNNLS.2020.3037795.
|
[14] |
S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999. DOI: 10.1016/S1364-6613(99)01327-3.
|
[15] |
M. Asif Rana, M. Mukadam, S. Reza Ahmadzadeh, S. Chernova, B. Boots. Learning generalizable robot skills from demonstrations in cluttered environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Madrid, Spain, pp. 4655–4660, 2018. DOI: 10.1109/IROS.2018.8593624.
|
[16] |
C. G. Yang, C. Zeng, C. Fang, W. He, Z. J. Li. A DMPs-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1193–1203, 2018. DOI: 10.1109/TMECH.2018.2817589.
|
[17] |
S. Calinon, A. Pistillo, D. G. Caldwell. Encoding the time and space constraints of a task in explicit-duration hidden Markov model. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, San Francisco, USA, pp. 3413–3418, 2011. DOI: 10.1109/IROS.2011.6094418.
|
[18] |
L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, C. Torras. Learning physical collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics, vol. 32, no. 3, pp. 513–527, 2016. DOI: 10.1109/TRO.2016.2540623.
|
[19] |
A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal. Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, vol. 25, no. 2, pp. 328–373, 2013. DOI: 10.1162/NECO_a_00393.
|
[20] |
A. Ude, A. Gams, T. Asfour, J. Morimoto. Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010. DOI: 10.1109/TRO.2010.2065430.
|
[21] |
P. Pastor, H. Hoffmann, T. Asfour, S. Schaal. Learning and generalization of motor skills by learning from demonstration. In Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 763–768, 2009. DOI: 10.1109/ROBOT.2009.5152385.
|
[22] |
T. Petrič, A. Gams, L. Colasanto, A. J. Ijspeert, A. Ude. Accelerated sensorimotor learning of compliant movement primitives. IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1636–1642, 2018. DOI: 10.1109/TRO.2018.2861921.
|
[23] |
Y. Wu, R. H. Wang, L. F. D′Haro, R. E. Banchs, K. P. Tee. Multi-modal robot apprenticeship: Imitation learning using linearly decayed DMP+ in a human-robot dialogue system. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Madrid, Spain, pp. 8585–8588, 2018. DOI: 10.1109/IROS.2018.8593634.
|
[24] |
C. G. Yang, C. Z. Chen, W. He, R. X. Cui, Z. J. Li. Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 777–787, 2019. DOI: 10.1109/TNNLS.2018.2852711.
|
[25] |
A. Pervez, D. Lee. Learning task-parameterized dynamic movement primitives using mixture of GMMs. Intelligent Service Robotics, vol. 11, no. 1, pp. 61–78, 2018. DOI: 10.1007/s11370-017-0235-8.
|
[26] |
Z. J. Li, T. Zhao, F. Chen, Y. B. Hu, C. Y. Su, T. Fukuda. Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoidlike mobile manipulator. IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 121–131, 2018. DOI: 10.1109/TMECH.2017.2717461.
|
[27] |
T. Kulvicius, K. J. Ning, M. Tamosiunaite, F. Wörgötter. Joining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Transactions on Robotics, vol. 28, no. 1, pp. 145–157, 2012. DOI: 10.1109/TRO.2011.2163863.
|
[28] |
B. E. Perk, J. J. E. Slotine. Motion primitives for robotic flight control. [Online], Available: https://arxiv.org/abs/cs/0609140, 2006.
|
[29] |
W. Wang, J. J. E. Slotine. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics, vol. 92, no. 1, pp. 38–53, 2005. DOI: 10.1007/s00422-004-0527-x.
|
[30] |
Z. J. Li, Z. C. Huang, W. He, C. Y. Su. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1664–1674, 2017. DOI: 10.1109/TIE.2016.2538741.
|
[31] |
W. Wu, Y. M. Li, S. C. Tong. Neural network output-feedback consensus fault-tolerant control for nonlinear multiagent systems with intermittent actuator faults. IEEE Transactions on Neural Networks and Learning Systems, to be published. DOI: 10.1109/TNNLS.2021.3117364.
|
[32] |
L. H. Kong, W. He, C. G. Yang, Z. J. Li, C. Y. Sun. Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning. IEEE Transactions on Cybernetics, vol. 49, no. 8, pp. 3052–3063, 2019. DOI: 10.1109/TCYB.2018.2838573.
|
[33] |
J. Y. Li, Z. H. Zhan, J. Zhang. Evolutionary computation for expensive optimization: A survey. Machine Intelligence Research, vol. 19, no. 1, pp. 3–23, 2022. DOI: 10.1007/s11633-022-1317-4.
|
[34] |
B. B. Jia, M. L. Zhang. Multi-dimensional classification via selective feature augmentation. Machine Intelligence Research, vol. 19, no. 1, pp. 38–51, 2022. DOI: 10.1007/s11633-022-1316-5.
|
[35] |
Y. L. Yang, K. G. Vamvoudakis, H. Modares, Y. X. Yin, D. C. Wunsch. Safe intermittent reinforcement learning with static and dynamic event generators. IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5441–5455, 2020. DOI: 10.1109/TNNLS.2020.2967871.
|
[36] |
H. Y. Li, Y. Wu, M. Chen, R. Q. Lu. Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, to be published. DOI: 10.1109/TNNLS.2021.3090570.
|
[37] |
Y. Liu, X. B. Chen, Y. L. Wu, H. Cai, H. Yokoi. Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint. IEEE Transactions on Neural Networks and Learning Systems, to be published. DOI: 10.1109/TNNLS.2021.3072907.
|
[38] |
P. van Cuong, W. Y. Nan. Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Computing and Applications, vol. 27, no. 2, pp. 525–536, 2016. DOI: 10.1007/s00521-015-1873-4.
|
[39] |
C. X. Liu, G. L. Wen, Z. J. Zhao, R. Sedaghati. Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain. IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2339–2346, 2021. DOI: 10.1109/TCYB.2020.2978003.
|
[40] |
Y. Ren, Z. J. Zhao, C. L. Zhang, Q. M. Yang, K. S. Hong. Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties. IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4796–4807, 2021. DOI: 10.1109/TCYB.2020.3021069.
|
[41] |
M. Chen, S. S. Ge, B. V. E. How. Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Transactions on Neural Networks, vol. 21, no. 5, pp. 796–812, 2010. DOI: 10.1109/TNN.2010.2042611.
|
[42] |
L. H. Kong, W. He, Y. T. Dong, L. Cheng, C. G. Yang, Z. J. Li. Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback. IEEE Transactions on Systems,Man,and Cybernetics:Systems, vol. 51, no. 3, pp. 1735–1746, 2021. DOI: 10.1109/TSMC.2019.2901277.
|
[43] |
H. W. Lin, B. Zhao, D. R. Liu, C. Alippi. Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks. IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 954–964, 2020. DOI: 10.1109/JAS.2020.1003225.
|
[44] |
A. Chaouki, A. El Abed. Finite-time and fixed-time synchronization of inertial neural networks with mixed delays. Journal of Systems Science and Complexity, vol. 34, no. 1, pp. 206–235, 2021. DOI: 10.1007/s11424-020-9029-8.
|
[45] |
H. Y. Li, S. Y. Zhao, W. He, R. Q. Lu. Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica, vol. 100, pp. 99–107, 2019. DOI: 10.1016/j.automatica.2018.10.030.
|
[46] |
Q. T. Zhao, J. Sun, Y. Q. Bai. Dynamic event-triggered control for nonlinear systems: A small-gain approach. Journal of Systems Science and Complexity, vol. 33, no. 4, pp. 930–943, 2020. DOI: 10.1007/s11424-020-9210-0.
|
[47] |
Z. J. Liu, Z. J. Han, Z. J. Zhao, W. He. Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Science China Information Sciences, vol. 64, no. 5, Article number 152208, 2021. DOI: 10.1007/s11432-020-3109-x.
|
[48] |
L. H. Kong, W. He, Z. J. Liu, X. B. Yu, C. Silvestre. Adaptive tracking control with global performance for output-constrained MIMO nonlinear systems. IEEE Transactions on Automatic Control, to be published. DOI: 10.1109/TAC.2022.3201258.
|