Citation: | Lin Song, Jin-Fu Yang, Qing-Zhen Shang, Ming-Ai Li. Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism. Machine Intelligence Research, vol. 19, no. 3, pp.247-256, 2022. https://doi.org/10.1007/s11633-022-1327-2 |
[1] |
F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 815−823, 2015. DOI: 10.1109/CVPR.2015.7298682.
|
[2] |
F. F. Zhang, T. Z. Zhang, Q. R. Mao, C. S. Xu. Joint pose and expression modeling for facial expression recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3359−3368, 2018. DOI: 10.1109/CVPR.2018.00354.
|
[3] |
K. P. Zhang, Z. P. Zhang, Z. F. Li, Y. Qiao. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016. DOI: 10.1109/LSP.2016.2603342.
|
[4] |
P. Y. Hu, D. Ramanan. Finding tiny faces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Honolulu, USA, pp. 1522−1530, 2017. DOI: 10.1109/CVPR.2017.166.
|
[5] |
M. Najibi, P. Samangouei, R. Chellappa, L. S. Davis. SSH: Single stage headless face detector. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Venice, Italy, pp. 4885−4894, 2017. DOI: 10.1109/ICCV.2017.522.
|
[6] |
J. K. Deng, J. Guo, Y. X. Zhou, J. K. Yu, I. Kotsia, S. Zafeiriou. RetinaFace: Single-stage dense face localisation in the wild. [Online], Available: https://arxiv.org/abs/1905.00641, 2019.
|
[7] |
T. Y. Lin, P. Goyal, R. Girshick, K. M. He, P. Dollár. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020. DOI: 10.1109/TPAMI.2018.2858826.
|
[8] |
V. Jain, E. Learned-Miller. FDDB: A Benchmark for Face Detection in Unconstrained Settings, Technical Report UM-CS-2010-009, University of Massachusetts, USA, 2010.
|
[9] |
S. Yang, P. Luo, C. C. Loy, X. O. Tang. WIDER FACE: A face detection benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 5525−5533, 2016. DOI: 10.1109/CVPR.2016.596.
|
[10] |
C. C. Zhu, Y. T. Zheng, K. Luu, M. Savvides. CMS-RCNN: Contextual multi-scale region-based CNN for unconstrained face detection. Deep Learning for Biometrics, B. Bhanu, A. Kumar, Eds., Cham, Germany: Springer, pp. 57−79, 2017. DOI: 10.1007/978-3-319-61657-5_3.
|
[11] |
S. Q. Ren, K. M. He, R. Girshick, J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 91−99, 2015. DOI: 10.5555/2969239.2969250.
|
[12] |
T. Xu, D. K. Du, Z. Q. He, J. T. Liu. PyramidBox: A context-assisted single shot face detector. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 812−828, 2018. DOI: 10.1007/978-3-030-01240-3_49.
|
[13] |
S. F. Zhang, X. Y. Zhu, Z. Lei, H. L. Shi, X. B. Wang, S. Z. Li. S.3FD: Single shot scale-invariant face detector. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Venice, Italy, pp. 192−201, 2017. DOI: 10.1109/ICCV.2017.30.
|
[14] |
M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu. Spatial transformer networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 2017−2025, 2015. DOI: 10.5555/2969442.2969465.
|
[15] |
J. Hu, L. Shen, S. Albanie, G. Sun, E. H. Wu. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011–2023, 2020. DOI: 10.1109/TPAMI.2019.2913372.
|
[16] |
S. Woo, J. Park, J. Y. Lee, I. S. Kweon. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 3−19, 2018. DOI: 10.1007/978-3-030-01234-2_1.
|
[17] |
J. F. Wang, Y. Yuan, G. Yu. Face attention network: An effective face detector for the occluded faces. [Online],Available: https://arxiv.org/abs/1711.07246, 2017.
|
[18] |
A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications. [Online], Available: https://arxiv.org/abs/1704.04861, 2017.
|
[19] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 770−778, 2016. DOI: 10.1109/CVPR.2016.90.
|
[20] |
S. S. Farfade, M. J. Saberian, L. J. Li. Multi-view face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ACM, Shanghai, China, pp. 643−650, 2015. DOI: 10.1145/2671188.2749408.
|
[21] |
H. X. Li, Z. Lin, X. H. Shen, J. Brandt, G. Hua. A convolutional neural network cascade for face detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 5325−5334, 2015. DOI: 10.1109/CVPR.2015.7299170.
|
[22] |
R. Girshick. Fast R-CNN. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Santiago, Chile, pp. 1440−1448, 2015. DOI: 10.1109/ICCV.2015.169.
|
[23] |
R. Ranjan, V. M. Patel, R. Chellappa. A deep pyramid deformable part model for face detection. In Proceedings of the 7th IEEE International Conference on Biometrics Theory, Applications and Systems, IEEE, Arlington, USA, pp. 1−8, 2015. DOI: 10.1109/BTAS.2015.7358755.
|
[24] |
J. H. Yu, Y. N. Jiang, Z. Y. Wang, Z. M. Cao, T. Huang. UnitBox: An advanced object detection network. In Proceedings of the 24th ACM International Conference on Multimedia, ACM, Amsterdam, The Netherlands, pp. 516−520, 2016. DOI: 10.1145/2964284.2967274.
|