Citation: | Ali Dolatshahi Zand, Kaveh Khalili-Damghani, Sadigh Raissi. Designing an Intelligent Control Philosophy in Reservoirs of Water Transfer Networks in Supervisory Control and Data Acquisition System Stations. International Journal of Automation and Computing, vol. 18, no. 5, pp.694-717, 2021. https://doi.org/10.1007/s11633-021-1284-1 |
[1] |
A. Dolatshahi-Zand, K. Khalili-Damghani. Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization. Reliability Engineering &System Safety, vol. 133, pp. 11–21, 2015. DOI: 10.1016/j.ress.2014.07.020.
|
[2] |
S. Huda, J. Yearwood, M. M. Hassan, A. Almogren. Securing the operations in SCADA-IoT platform based industrial control system using ensemble of deep belief networks. Applied Soft Computing, vol. 71, pp. 66–77, 2018. DOI: 10.1016/j.asoc.2018.06.017.
|
[3] |
V. S. Ediger, S. Akar. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, vol. 35, no. 3, pp. 1701–1708, 2007. DOI: 10.1016/j.enpol.2006.05.009.
|
[4] |
R. Jammazi, C. Aloui. Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, vol. 34, no. 3, pp. 828–841, 2012. DOI: 10.1016/j.eneco.2011.07.018.
|
[5] |
J. D. Wu, J. C. Liu. A forecasting system for car fuel consumption using a radial basis function neural network. Expert Systems with Applications, vol. 39, no. 2, pp. 1883–1888, 2012. DOI: 10.1016/j.eswa.2011.07.139.
|
[6] |
A. S. Khwaja, M. Naeem, M. Anpalagan, A. Venetsanopoulos, B. Venkatesh. Improved short-term load forecasting using bagged neural networks. Electric Power Systems Research, vol. 125, pp. 109–115, 2015. DOI: 10.1016/j.jpgr.2015.03.027.
|
[7] |
S. J. Nizami, A. Z. Al-Garni. Forecasting electric energy consumption using neural networks. Energy Policy, vol. 23, no. 12, pp. 1097–1104, 1995. DOI: 10.1016/0301-4215(95)00116-6.
|
[8] |
T. Al-Saba, I. El-Amin. Artificial neural networks as applied to long-term demand forecasting. Artificial Intelligence in Engineering, vol. 13, no. 2, pp. 189–197, 1999. DOI: 10.1016/S0954-1810(98)00018-1.
|
[9] |
B. Kermanshahi, H. Iwamiya. Up to year 2020 load forecasting using neural nets. International Journal of Electrical Power &Energy Systems, vol. 24, no. 9, pp. 789–797, 2002. DOI: 10.1016/S0142-0615(01)00086-2.
|
[10] |
E. Gonzalez-Romera, M. A. Jaramillo-Moran, D. Carmona-Fernandez. Monthly electric energy demand forecasting based on trend extraction. IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1946–1953, 2006. DOI: 10.1109/TPWRS.2006.883666.
|
[11] |
M. A. Jaramillo-Moran, E. Gonzalez-Romera, D. Carmona-Fernandez. Monthly electric demand forecasting with neural filters. International Journal of Electrical Power &Energy Systems, vol. 49, pp. 253–263, 2013. DOI: 10.1016/j.ijepes.2013.01.019.
|
[12] |
J. Szoplik. Forecasting of natural gas consumption with artificial neural networks. Energy, vol. 85, pp. 208–220, 2015. DOI: 10.1016/j.energy.2015.03.084.
|
[13] |
K. G. Xie, H. Zhang, C. Singh. Reliability forecasting models for electrical distribution systems considering component failures and planned outages. International Journal of Electrical Power &Energy Systems, vol. 79, pp. 228–234, 2016. DOI: 10.1016/j.ijepes.2016.01.020.
|
[14] |
M. Aljanabi, M. Shkoukani, M. Hijjawi. Ground-level ozone prediction using machine learning techniques: A case study in Amman, Jordan. International Journal of Automation and Computing, vol. 17, no. 5, pp. 667–677, 2020. DOI: 10.1007/s11633-020-1233-4.
|
[15] |
S. A. Moezi, M. Rafeeyan, E. Zakeri, A. Zare. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave. ISA Transactions, vol. 61, pp. 265–286, 2016. DOI: 10.1016/j.isatra.2015.12.005.
|
[16] |
S. Rajan, S. Sahadev. Performance improvement of fuzzy logic controller using neural network. Procedia Technology, vol. 24, pp. 704–714, 2016. DOI: 10.1016/j.protcy.2016.05.197.
|
[17] |
H. Sathishkumar, S. S. Parthasarathy. A novel neuro-fuzzy controller for vector controlled induction motor drive. Energy Procedia, vol. 138, pp. 698–703, 2017. DOI: 10.1016/j.egypro.2017.10.203.
|
[18] |
P. C. Sahu, S. Mishra, R. C. Prusty, S. Panda. Improved-salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid. Sustainable Energy,Grids and Networks, vol. 16, pp. 380–392, 2018. DOI: 10.1016/j.segan.2018.10.003.
|
[19] |
A. A. Khater, A. M. El-Nagar, M. El-Bardini, N. M. El-Rabaie. Adaptive T–S fuzzy controller using reinforcement learning based on Lyapunov stability. Journal of the Franklin Institute, vol. 355, no. 14, pp. 6390–6415, 2018. DOI: 10.1016/j.jfranklin.2018.06.031.
|
[20] |
A. M. Zaki, M. El-Bardini, F. A. S. Soliman, M. M. Sharaf. Embedded two level direct adaptive fuzzy controller for DC motor speed control. Ain Shams Engineering Journal, vol. 9, no. 1, pp. 65–75, 2018. DOI: 10.1016/j.asej.2015.10.003.
|
[21] |
E. B. Priyanka, C. Maheswari, S. Thangavel. Online monitoring and control of flow rate in oil pipelines transportation system by using PLC based fuzzy-PID controller. Flow Measurement and Instrumentation, vol. 62, pp. 144–151, 2018. DOI: 10.1016/j.flowmeasinst.2018.02.010.
|
[22] |
R. Goswami, D. Joshi. Performance review of fuzzy logic based controllers employed in brushless DC motor. Procedia Computer Science, vol. 132, pp. 623–631, 2018. DOI: 10.1016/j.procs.2018.05.061.
|
[23] |
M. A. C. Fernandes. Fuzzy controller applied to electric vehicles with continuously variable transmission. Neurocomputing, vol. 214, pp. 684–691, 2016. DOI: 10.1016/j.neucom.2016.06.051.
|
[24] |
Y. K. Kang, H. Kim, G. Heo, S. Y. Song. Diagnosis of feedwater heater performance degradation using fuzzy inference system. Expert Systems with Applications, vol. 69, pp. 239–246, 2017. DOI: 10.1016/j.eswa.2016.10.052.
|
[25] |
A. H. Attia, S. F. Rezeka, A. M. Saleh. Fuzzy logic control of air-conditioning system in residential buildings. Alexandria Engineering Journal, vol. 54, no. 3, pp. 395–403, 2015. DOI: 10.1016/j.aej.2015.03.023.
|
[26] |
M. M. Algazar, H. AL-monier, H. Abd EL-halim, M. E. El Kotb Salem. Maximum power point tracking using fuzzy logic control. International Journal of Electrical Power &Energy Systems, vol. 39, no. 1, pp. 21–28, 2012. DOI: 10.1016/j.ijepes.2011.12.006.
|
[27] |
L. Suganthi, S. Iniyan, A. A. Samuel. Applications of fuzzy logic in renewable energy systems − A review. Renewable and Sustainable Energy Reviews, vol. 48, pp. 585–607, 2015. DOI: 10.1016/j.rser.2015.04.037.
|
[28] |
A. M. Eltamaly, H. M. Farh. Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, vol. 97, pp. 144–150, 2013. DOI: 10.1016/j.jpgr.2013.01.001.
|
[29] |
A. S. Koshiyama, M. M. B. R. Vellasco, R. Tanscheit. GPFIS-CLASS: A genetic fuzzy system based on genetic programming for classification problems. Applied Soft Computing, vol. 37, pp. 561–571, 2015. DOI: 10.1016/j.asoc.2015.08.055.
|
[30] |
W. Caesarendra, T. Wijaya, T. Tjahjowidodo, B. K. Pappachan, A. Wee, M. I. Roslan. Adaptive neuro-fuzzy inference system for deburring stage classification and prediction for indirect quality monitoring. Applied Soft Computing, vol. 72, pp. 565–578, 2018. DOI: 10.1016/j.asoc.2018.01.008.
|
[31] |
M. Errouha, A. Derouich, S. Motahhir, O. Zamzoum, N. El Ouanjli, A. El Ghzizal. Optimization and control of water pumping PV systems using fuzzy logic controller. Energy Reports, vol. 5, pp. 853–865, 2019. DOI: 10.1016/j.egyr.2019.07.001.
|
[32] |
M. Al-Fetyani, M. Hayajneh, A. Alsharkawi. Design of an executable ANFIS-based control system to improve the attitude and altitude performances of a quadcopter drone. International Journal of Automation and Computing, vol. 18, no. 1−2, pp. 124–140, 2021. DOI: 10.1007/s11633-020-1251-2.
|
[33] |
D. H. Al-Janan, H. C. Chang, Y. P. Chen, T. K. Liu. Optimizing the double inverted pendulum′s performance via the uniform neuro multiobjective genetic algorithm. International Journal of Automation and Computing, vol. 14, no. 6, pp. 686–695, 2017. DOI: 10.1007/s11633-017-1069-8.
|
[34] |
D. J. Li, Y. Y. Li, J. X. Li, Y. Fu. Gesture recognition based on BP neural network improved by chaotic genetic algorithm. International Journal of Automation and Computing, vol. 15, no. 3, pp. 267–276, 2018. DOI: 10.1007/s11633-017-1107-6.
|
[35] |
K. Rajarathinam, J. B. Gomm, D. L. Yu, A. S. Abdelhadi. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing, vol. 13, pp. 64–72, 2016. DOI: 10.1007/s11633-015-0910-1.
|
[36] |
J. Y. Long, S. H. Zhang, C. Li. Evolving deep echo state networks for intelligent fault diagnosis. IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4928–4937, 2020. DOI: 10.1109/TII.2019.2938884.
|
[37] |
A. A. Shojaie, A. D. Zand, S. Vafaie. Calculating production by using short term demand forecasting models: A case study of fuel supply system. Evolving Systems, vol. 8, no. 4, pp. 271–285, 2017. DOI: 10.1007/s12530-016-9173-5.
|
[38] |
M. Firat, M. A. Yurdusev, M. E. Turan. Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resources Management, vol. 23, no. 4, pp. 617–632, 2009. DOI: 10.1007/s11269-008-9291-3.
|
[39] |
M. N. Nawi, W. H. Atomi, M. Z. Rehman. The effect of data pre-processing on optimized training of artificial neural networks. Procedia Technology, vol. 11, pp. 32–39, 2013. DOI: 10.1016/j.protcy.2013.12.159.
|
[40] |
N. Siddique, H. Adeli. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, Chichester, USA: John Wiley & Sons, 2013.
|
[41] |
J. Heaton. Introduction to Neural Networks for Java, 2nd ed., Chesterfield, USA: Heaton Research, Inc, 2008.
|
[42] |
H. Rouhparvar, A. Panahi. A new definition for defuzzification of generalized fuzzy numbers and its application. Applied Soft Computing, vol. 30, pp. 577–584, 2015. DOI: 10.1016/j.asoc.2015.01.053.
|
[43] |
M. V. Bobyr, N. A. Milostnaya, S. A. Kulabuhov. A method of defuzzification based on the approach of areas′ ratio. Applied Soft Computing, vol. 59, pp. 19–32, 2017. DOI: 10.1016/j.asoc.2017.05.040.
|
[44] |
L. X. Wang. A Course in Fuzzy Systems and Control, Englewood Cliffs, USA: Prentice-Hall, 1997.
|
[45] |
E. W. McAllister. Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems, 8th ed., Amsterdam, Netherlands: Elsevier, 2014.
|
[46] |
P. L. Skousen. Valve Handbook, 3rd ed., New York, USA: McGraw-Hill, 2011.
|
[47] |
H. Asgari, X. Q. Chen, M. Morini, M. Pinelli, R. Sainudiin, P. R Spina, M. Venturini. NARX models for simulation of the start-up operation of a single-shaft gas turbine. Applied Thermal Engineering, vol. 93, pp. 368–376, 2016. DOI: 10.1016/j.applthermaleng.2015.09.074.
|
[48] |
E. Heidari, A. Daeichian, M. A. Sobati, S. Movahedirad. Prediction of the droplet spreading dynamics on a solid substrate at irregular sampling intervals: Nonlinear Auto-Regressive exogenous Artificial Neural Network approach (NARX-ANN). Chemical Engineering Research and Design, vol. 156, pp. 263–272, 2020. DOI: 10.1016/j.cherd.2020.01.033.
|
[49] |
Z. Xu, J. Yang, H. Q. Cai, Y G. Kong, B. S. He. Water distribution network modeling based on NARX. IFAC-PapersOnLine, vol. 48, no. 11, pp. 72–77, 2015. DOI: 10.1016/j.ifacol.2015.09.162.
|