Citation: | Nacer Hacene, Boubekeur Mendil. Behavior-based Autonomous Navigation and Formation Control of Mobile Robots in Unknown Cluttered Dynamic Environments with Dynamic Target Tracking. International Journal of Automation and Computing, vol. 18, no. 5, pp.766-786, 2021. https://doi.org/10.1007/s11633-020-1264-x |
[1] |
T. Dash. Automatic navigation of wall following mobile robot using adaptive resonance theory of type-1. Biologically Inspired Cognitive Architectures, vol. 12, 2015. DOI: 10.1016/j.bica.2015.04.008.
|
[2] |
M. Panda, B. Das, B. Subudhi, B. B. Pati. A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, vol. 17, no. 3, pp. 321–352, 2020. DOI: 10.1007/s11633-019-1204-9.
|
[3] |
Y. Zhu, T. Zhang, J. Y. Song, X. Q. Li. A hybrid navigation strategy for multiple mobile robots. Robotics and Computer-Integrated Manufacturing, vol. 29, no. 4, pp. 129–141, 2013. DOI: 10.1016/j.rcim.2012.11.007.
|
[4] |
M. Algabri, H. Mathkour, H. Ramdane, M. Alsulaiman. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, vol. 50, pp. 42–56, 2015. DOI: 10.1016/j.chb.2015.03.062.
|
[5] |
O. Motlagh, S. H. Tang, N. Ismail, A. R. Ramli. An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets and Systems, vol. 201, pp. 105–121, 2012. DOI: 10.1016/j.fss.2011.12.013.
|
[6] |
A. Petrovskaya, O. Khatib. Global localization of objects via touch. IEEE Transactions on Robotics, vol. 27, no. 3, pp. 569–585, 2011. DOI: 10.1109/TRO.2011.2138450.
|
[7] |
O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986. DOI: 10.1177/027836498600500106.
|
[8] |
A. N. Ouda, A. Mohamed, M. EI-Gindy, H. X. Lang, J. Ren. Development and modeling of remotely operated scaled multi-wheeled combat vehicle using system identification. International Journal of Automation and Computing, vol. 16, no. 3, pp. 261–273, 2019. DOI: 10.1007/s11633-018-1161-8.
|
[9] |
K. Al-Mutib, E. Mattar, M. Alsulaiman. Implementation of fuzzy decision based mobile robot navigation using stereo vision. Procedia Computer Science, vol. 62, pp. 143–150, 2015. DOI: 10.1016/j.procs.2015.08.427.
|
[10] |
B. Hu, J. C. Wang. Deep learning based hand gesture recognition and UAV flight controls. International Journal of Automation and Computing, vol. 17, no. 1, pp. 17–29, 2020. DOI: 10.1007/s11633-019-1194-7.
|
[11] |
M. Beyeler, N. Oros, N. Dutt, J. L. Krichmar. A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Networks, vol. 72, pp. 75–87, 2015. DOI: 10.1016/j.neunet.2015.09.005.
|
[12] |
X. Q. Wang, Z. G. Hou, F. Lv, M. Tan, Y. J. Wang. Mobile robots′ modular navigation controller using spiking neural networks. Neurocomputing, vol. 134, pp. 230–238, 2014. DOI: 10.1016/j.neucom.2013.07.055.
|
[13] |
S. Kundu, D. R. Parhi. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. International Journal of Automation and Computing, vol. 14, no. 3, pp. 307–320, 2017. DOI: 10.1007/s11633-016-0983-5.
|
[14] |
A. M. Rao, K. Ramji, B. S. K. Sundara Siva Rao, V. Vasu, C. Puneeth. navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, 2017. DOI: 10.1007/s11633-016-1042-y.
|
[15] |
Y. L. Chen, J. Cheng, C. Lin, X. Y. Wu, Y. S. Ou, Y. S. Xu. Classification-based learning by particle swarm optimization for wall-following robot navigation. Neurocomputing, vol. 113, pp. 27–35, 2013. DOI: 10.1016/j.neucom.2012.12.037.
|
[16] |
M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, P. Melin. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, vol. 9, no. 3, pp. 1102–1110, 2009. DOI: 10.1016/j.asoc.2009.02.014.
|
[17] |
A. Babinec, F. Duchoň, M. Dekan, P. Pásztó, M. Kelemen. VFH*TDT (VFH* with time dependent tree): A new laser based obstacle avoidance method designed for environment with non-static obstacles. Robotics and Autonomous Systems, vol. 62, pp. 1098–1115, 2014. DOI: 10.1016/j.robot.2014.05.003.
|
[18] |
I. Ulrich, J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1572−1577, 1998.
|
[19] |
I. Ulrich, J. Borenstein. VFH*: Local obstacle avoidance with look-ahead verification. In Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, pp. 2505−2511, 2000.
|
[20] |
B. Li, C. Xu, K. L. Teo, J. Chu. Time optimal Zermelo′s navigation problem with moving and fixed obstacles. Applied Mathematics and Computation, vol. 224, pp. 866–875, 2013. DOI: 10.1016/j.amc.2013.08.092.
|
[21] |
M. A. K. Jaradat, M. Al-Rousan, L. Quadan. Reinforcement based mobile robot navigation in dynamic environment. Robotics and Computer-Integrated Manufacturing, vol. 27, no. 1, pp. 135–149, 2011. DOI: 10.1016/j.rcim.2010.06.019.
|
[22] |
A. S. Matveev, M. C. Hoy, A. V. Savkin. A globally converging algorithm for reactive robot navigation among moving and deforming obstacles. Automatica, vol. 54, pp. 292–304, 2015. DOI: 10.1016/j.automatica.2015.02.012.
|
[23] |
Y. N. Wang, Y. M. Yang, X. F. Yuan, Y. Zuo, Y. L. Zhou, F. Yin, L. Tan. Autonomous mobile robot navigation system designed in dynamic environment based on transferable belief model. Measurement, vol. 44, no. 8, pp. 1389–1405, 2011. DOI: 10.1016/j.measurement.2011.05.010.
|
[24] |
X. Y. Zhong, X. G. Zhong, X. F. Peng. Velocity-Change-Space-based dynamic motion planning for mobile robots navigation. Neurocomputing, vol. 143, pp. 153–163, 2014. DOI: 10.1016/j.neucom.2014.06.010.
|
[25] |
A. V. Savkin, C. Wang. Seeking a path through the crowd: Robot navigation in unknown dynamic environments with moving obstacles based on an integrated environment representation. Robotics and Autonomous Systems, vol. 62, no. 10, pp. 1568–1580, 2014. DOI: 10.1016/j.robot.2014.05.006.
|
[26] |
O. Montiel, U. Orozco-Rosas, R. Sepúlveda. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Systems with Applications, vol. 42, no. 12, pp. 5177–5191, 2015. DOI: 10.1016/j.eswa.2015.02.033.
|
[27] |
Z. H. Li, Z. W. Wu, Y. L. Fu. Dynamic obstacle avoidance of mobile robot tele-operation based on non-contact impedance control. In Proceedings of the 11th World Congress on Intelligent Control and Automation, IEEE, Shenyang, China, pp. 1421−1426, 2014.
|
[28] |
K. Kanjanawanishkul. Formation control of mobile robots: Survey. Academic Journal Engineering, vol. 4, no. 1, pp. 50–64, 2011.
|
[29] |
I. Navarro, F. Matía. A survey of collective movement of mobile robots. International Journal of Advanced Robotic Systems, vol. 10, no. 1, 2013. DOI: 10.5772/54600.
|
[30] |
M. J. Mataric. Designing emergent behaviors: From local interactions to collective intelligence. In Proceedings of the 2nd International Conference on from Animals to Animats 2: Simulation of Adaptive Behavior: Simulation of Adaptive Behavior, Honolulu, USA, pp. 432−441, 1992.
|
[31] |
H. Rezaee, F. Abdollahi. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 347–354, 2014. DOI: 10.1109/TIE.2013.2245612.
|
[32] |
D. D. Xu, X. N. Zhang, Z. Q. Zhu, C. L. Chen, P. Yang. Behavior-based formation control of swarm robots. Mathematical Problems in Engineering, vol. 2014, Article number 205759, 2014.
|
[33] |
Y. C. Liu, R. Bucknall. A survey of formation control and motion planning of multiple unmanned vehicles. Robotica, vol. 36, no. 7, pp. 1019–1047, 2018. DOI: 10.1017/S0263574718000218.
|
[34] |
J. Vilca, L. Adouane, Y. Mezouar. Adaptive leader-follower formation in cluttered environment using dynamic target reconfiguration. In Proceedings of the 12th International Symposium, Springer, Tokyo, Japan, pp. 237−254, 2016.
|
[35] |
K. Raghuwaiya, B. Sharma, J. Vanualailai. Leader-follower based locally rigid formation control. Journal of Advanced Transportation, vol. 2018, Article number 5278565, 2018.
|
[36] |
G. Lee, D. Chwa. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, vol. 11, no. 1, pp. 127–138, 2018. DOI: 10.1007/s11370-017-0240-y.
|
[37] |
H. S. Kim, J. K. Park, T. Y. Kuc, N. Y. Ko, Y. S. Moon. A formation and traction control design for multiple mobile robots. International Journal of Control,Automation and Systems, vol. 15, no. 3, pp. 1287–1301, 2017. DOI: 10.1007/s12555-016-0025-7.
|
[38] |
M. Khaledyan, M. de Queiroz. A formation maneuvering controller for multiple non-holonomic robotic vehicles. Robotica, vol. 37, no. 1, pp. 189–211, 2018. DOI: 10.1017/S0263574718000942.
|
[39] |
M. A. Lewis, K. H. Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997. DOI: 10.1023/A:1008814708459.
|
[40] |
L. E. Parker. Adaptive action selection for cooperative agent teams. In Proceedings of the 2nd International Conference on Simulation of Adaptive Behavior, J. A. Meyer, H. Roitblat, S. Wilson, Eds., Cambridge, UK: MIT Press, pp. 442−445, 1992.
|
[41] |
L. E. Parker. Designing control laws for cooperative agent teams. In Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, USA, pp. 582−587, 1993.
|
[42] |
L. E. Parker. An experiment in mobile robotic cooperation. In Proceedings of ASCE Specialty Conference on Robotics for Challenging Environments, Albuquerque, USA, pp. 131−139, 1994.
|
[43] |
N. Hacene, B. Mendil. Motion analysis and control of three-wheeled omnidirectional mobile robot. Journal of Control,Automation and Electrical Systems, vol. 30, no. 2, pp. 194–213, 2019. DOI: 10.1007/s40313-019-00439-0.
|
[44] |
N. Hacene, B. Mendil. Fuzzy behavior-based control of three wheeled omnidirectional mobile robot. International Journal of Automation and Computing, vol. 16, no. 2, pp. 163–185, 2019. DOI: 10.1007/s11633-018-1135-x.
|
[45] |
J. J. Craig. Introduction to Robotics: Mechanics and Control, 3rd ed., New York, USA: Pearson Education, Inc., 2005.
|
[46] |
R. A. Brooks. A Robust Layered Control System for A Mobile Robot, Technical Report AIM 864, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA, pp. 1−25, 1985.
|
[47] |
C. C. Tsai, H. L. Wu, F. C. Tai, Y. S. Chen. Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. International Journal of Fuzzy Systems, vol. 19, no. 5, pp. 1375–1391, 2017. DOI: 10.1007/s40815-016-0239-0.
|