Zai-Ran Wang, Jing Dong and Wei Wang. Quantization Based Watermarking Methods Against Valumetric Distortions. International Journal of Automation and Computing, vol. 14, no. 6, pp. 672-685, 2017. https://doi.org/10.1007/s11633-016-1010-6
Citation: Zai-Ran Wang, Jing Dong and Wei Wang. Quantization Based Watermarking Methods Against Valumetric Distortions. International Journal of Automation and Computing, vol. 14, no. 6, pp. 672-685, 2017. https://doi.org/10.1007/s11633-016-1010-6

Quantization Based Watermarking Methods Against Valumetric Distortions

doi: 10.1007/s11633-016-1010-6
Funds:

National Nature Science Foundation of China U1536120

National Nature Science Foundation of China 61303262

More Information
  • Author Bio:

    Zai-Ran Wang received the B. Eng. degree in computer science and technology from the College of Information Science and Engineering, Shandong Normal University, China in 2009. He is currently Ph. D. candidate in the College of Engineering & Information Technology, University of Chinese Academy of Sciences, China.
        His research interests include digital watermarking, image processing and pattern recognition.
        E-mail:wzr1201@163.com
        ORCID iD:0000-0002-8483-7742

    Wei Wang received the B. Eng. degree in computer science and technology from North China Electric Power University, China in 2007. Since 2012, he has been with the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China, where he is currently an assistant professor.
        His research interests include pattern recognition, image processing, and digital image forensics, including watermarking, steganalysis, and tampering detection.
        E-mail:wwang@nlpr.ia.ac.cn

  • Corresponding author: Jing Dong received the B. Sc. degree in electronic information science and technology from Central South University, China in 2005, and the Ph. D. degree in pattern recognition from the Institute of Automation, Chinese Academy of Sciences, China. Since 2010, she has been with the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China, where she is currently an assistant professor. She is a member of the IEEE Computer Science Society, the Signal Society, and the IEEE Communication Society.
        Her research interests include pattern recognition, image processing, and digital image forensics, including watermarking, steganalysis, and tampering detection.
        E-mail:jdong@nlpr.ia.ac.cn (Corresponding author)
        ORCID iD:0000-0002-2763-7832
  • Received Date: 2015-06-17
  • Accepted Date: 2015-09-22
  • Publish Online: 2017-06-25
  • Publish Date: 2017-12-01
  • Most of the quantization based watermarking algorithms are very sensitive to valumetric distortions, while these distortions are regarded as common processing in audio/video analysis. In recent years, watermarking methods which can resist this kind of distortions have attracted a lot of interests. But still many proposed methods can only deal with one certain kind of valumetric distortion such as amplitude scaling attack, and fail in other kinds of valumetric distortions like constant change attack, gamma correction or contrast stretching. In this paper, we propose a simple but effective method to tackle all the three kinds of valumetric distortions. This algorithm constructs an invariant domain first by spread transform which satisfies certain constraints. Then an amplitude scale invariant watermarking scheme is applied on the constructed domain. The validity of the approach has been confirmed by applying the watermarking scheme to Gaussian host data and real images. Experimental results confirm its intrinsic invariance against amplitude scaling, constant change attack and robustness improvement against nonlinear valumetric distortions.

     

  • loading
  • [1]
    I. J. Cox, J. Kilian, F. Leighton, T. Shamoon. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, vol. 6, no. 12, pp. 1673-1687, 1997. doi: 10.1109/83.650120
    [2]
    C. Podilchuk, W. J. Zeng. Image-adaptive watermarking using visual models. IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 525-539, 1998. doi: 10.1109/49.668975
    [3]
    B. Chen, G. W. Wornell. Quantization index modulation:A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, vol. 47, no. 4, pp. 1423-1443, 2001. doi: 10.1109/18.923725
    [4]
    P. Moulin, R. Koetter. Data-hiding codes. Proceedings of the IEEE, vol. 93, no. 12, pp. 2083-2126, 2005. doi: 10.1109/JPROC.2005.859599
    [5]
    J. J. K. O. Ruanaidh, T. Pun. Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing, vol. 66, no. 3, pp. 303-317, 1998. doi: 10.1016/S0165-1684(98)00012-7
    [6]
    H. S. Malvar, D. A. F. Florencio. Improved spread spectrum:A new modulation technique for robust watermarking. IEEE Transactions on Signal Processing, vol. 51, no. 4, pp. 898-905, 2003. doi: 10.1109/TSP.2003.809385
    [7]
    M. Barni, F. Bartolini, A. De Rosa, A. Piva. Optimum decoding and detection of multiplicative watermarks. IEEE Transactions on Signal Processing, vol. 51, no. 4, pp. 1118-1123, 2003. doi: 10.1109/TSP.2003.809371
    [8]
    W. Liu, L. N. Dong, W. J. Zeng. Optimum detection for spread-spectrum watermarking that employs self-masking. IEEE Transactions on Information Forensics and Security, vol. 2, no. 4, pp. 645-654, 2007. doi: 10.1109/TIFS.2007.908226
    [9]
    J. J. Eggers, R. Bauml, R. Tzschoppe, B. Girod. Scalar costa scheme for information embedding. IEEE Transactions on Signal Processing, vol. 51, no. 4, pp. 1003-1019, 2003. doi: 10.1109/TSP.2003.809366
    [10]
    F. Perez-Gonzalez, F. Balado, J. R. H. Martin. Performance analysis of existing and new methods for data hiding with known-host information in additive channels. IEEE Transactions on Signal Processing, vol. 51, no. 4, pp. 960-980, 2003. doi: 10.1109/TSP.2003.809368
    [11]
    F. Bartolini, M. Barni, A. Piva. Performance analysis of stdm watermarking in presence of nonadditive attacks. IEEE Transactions on Signal Processing, vol. 52, no. 10, pp. 2965-2974, 2004. doi: 10.1109/TSP.2004.833868
    [12]
    R. S. Run, S. J. Horng, J. L. Lai, T. W. Kao, R. J. Chen. An improved SVD-based watermarking technique for copyright protection. Expert Systems with Applications, vol. 39, no. 1, pp. 673-689, 2012. doi: 10.1016/j.eswa.2011.07.059
    [13]
    D. Rosiyadi, S. J. Horng, P. Z. Fan, X. Wang, M. K. Khan, Y. Pan. Copyright protection for e-government document images. IEEE MultiMedia, vol. 19, no. 3, pp. 62-73, 2012. doi: 10.1109/MMUL.2011.41
    [14]
    S. J. Horng, D. Rosiyadi, T. R. Li, T. Takao, M. Y. Guo, M. K. Khan. A blind image copyright protection scheme for e-government. Journal of Visual Communication and Image Representation, vol. 24, no. 7, pp. 1099-1105, 2013. doi: 10.1016/j.jvcir.2013.07.008
    [15]
    S. J. Horng, D. Rosiyadi, P. Z. Fan, X. Wang, M. K. Khan. An adaptive watermarking scheme for e-government document images. Multimedia Tools and Applications, vol. 72, no. 3, pp. 3085-3103, 2014. doi: 10.1007/s11042-013-1579-5
    [16]
    M. E. Farfoura, S. J. Horng, J. L. Lai, R. S. Run, R. J. Chen, M. K. Khan. A blind reversible method for watermarking relational databases based on a time-stamping protocol. Expert Systems with Applications, vol. 39, no. 3, pp. 3185-3196, 2012. doi: 10.1016/j.eswa.2011.09.005
    [17]
    S. J. Horng, M. E. Farfoura, P. Z. Fan, X. Wang, T. R. Li, J. M. Guo. A low cost fragile watermarking scheme in H.264/AVC compressed domain. Multimedia Tools and Applications, vol. 72, no. 3, pp. 2469-2495, 2014. doi: 10.1007/s11042-013-1561-2
    [18]
    P. Dong, J. G. Brankov, N. P. Galatsanos, Y. Y. Yang, F. Davoine. Digital watermarking robust to geometric distortions. IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2140-2150, 2005. doi: 10.1109/TIP.2005.857263
    [19]
    S. Pereira, T. Pun. Robust template matching for affine resistant image watermarks. IEEE Transactions on Image Processing, vol. 9, no. 6, pp. 1123-1129, 2000. doi: 10.1109/83.846253
    [20]
    M. A. Akhaee, S. M. E. Sahraeian, C. Jin. Blind image watermarking using a sample projection approach. IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 883-893, 2011. doi: 10.1109/TIFS.2011.2146250
    [21]
    P. Guccione, M. Scagliola. Hyperbolic rdm for nonlinear valumetric distortions. IEEE Transactions on Information Forensics and Security, vol. 4, no. 1, pp. 25-35, 2009. doi: 10.1109/TIFS.2008.2011080
    [22]
    Z. R. Wang, J. Dong, W. Wang, T. N. Tan. An effective watermarking method against valumetric distortions. In Proceedings of IEEE International Conference on Image Processing, IEEE, Paris, France, pp. 5487-5491, 2014.
    [23]
    F. Perez-Gonzalez, C. Mosquera, M. Barni, A. Abrardo. Rational dither modulation:A high-rate data-hiding method invariant to gain attacks. IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3960-3975, 2005. doi: 10.1109/TSP.2005.855407
    [24]
    F. Ourique, V. Licks, R. Jordan, F. Perez-Gonzalez. Angle QIM: A novel watermark embedding scheme robust against amplitude scaling distortions. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, Philadelphia, USA, vol. 2, pp. 797-800, 2005.
    [25]
    M. Zareian, H. R. Tohidypour, Z. J. Wang. A novel quantization-based watermarking approach invariant to gain attack. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, Canada, pp. 2945-2948, 2013.
    [26]
    X. S. Zhu, S. L. Peng. A novel quantization watermarking scheme by modulating the normalized correlation. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Kyoto, Japan, pp. 1765-1768, 2012.
    [27]
    J. J. Eggers, R. Bäuml, B. Girod. Estimation of amplitude modifications before scs watermark detection. In Proceedings of SPIE Security and Watermarking of Multimedia Contents IV, SPIE, San Jose, USA, vol. 4675, pp. 387-398, 2002.
    [28]
    I. D. Shterev, R. L. Lagendijk, R. Heusdens. Statistical amplitude scale estimation for quantization-based watermarking. In Proceedings of SPIE Security, Steganography, and Watermarking of Multimedia Contents VI, SPIE, San Jose, USA, vol. 5306, pp. 796-804, 2004.
    [29]
    I. D. Shterev, R. L. Lagendijk. Amplitude scale estimation for quantization-based watermarking. IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4146-4155, 2006. doi: 10.1109/TSP.2006.881216
    [30]
    M. L. Miller, G. J. Dorr, I. J. Cox. Dirty-paper trellis codes for watermarking. In Proceedings of International Conference on Image Processing, IEEE, Rochester, USA, vol. 2, pp. 129-132, 2002.
    [31]
    Q. Li, I. J. Cox. Rational dither modulation watermarking using a perceptual model. In Proceedings of IEEE the 7th Workshop on Multimedia Signal Processing, IEEE, Shanghai, China, pp. 1-4, 2005.
    [32]
    P. Bas. A quantization watermarking technique robust to linear and non-linear valumetric distortions using a fractal set of floating quantizers. In Proceedings of International Conference on Information Hiding, Barcelona, Spain, vol. 3727, pp. 106-117, 2005.
    [33]
    X. S. Zhu, J. Ding, H. H. Dong, K. F. Hu, X. B. Zhang. Normalized correlation-based quantization modulation for robust watermarking. IEEE Transactions on Multimedia, vol. 16, no. 7, pp. 1888-1904, 2014. doi: 10.1109/TMM.2014.2340695
    [34]
    M. Zareian, H. R. Tohidypour. A novel gain invariant quantization-based watermarking approach. IEEE Transactions on Information Forensics and Security, vol. 9, no. 11, pp. 1804-1813, 2014. doi: 10.1109/TIFS.2014.2355912
    [35]
    F. Guerrini, R. Leonardi, M. Barni. Image watermarking robust against non-linear value-metric scaling based on higher order statistics. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Toulouse, France, vol. 5, pp. V-V, 2006.
    [36]
    V. Q. Pham, T. Miyaki, T. Yamasaki, K. Aizawa. Geometrically invariant object-based watermarking using sift feature. In Proceedings of IEEE International Conference on Image Processing, IEEE, San Antonio, USA, vol. 5, pp. 473-476, 2007.
    [37]
    Y. T. Lin, C. Y. Huang, G. Lee. Rotation, scaling, and translation resilient watermarking for images. IET Image Processing, vol. 5, no. 4, pp. 328-340, 2011. doi: 10.1049/iet-ipr.2009.0264
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (8271) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return