Xi-Sheng Dai, Sen-Ping Tian and Ya-Jun Guo. Iterative Learning Control for Discrete Parabolic Distributed Parameter Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 316-322, 2015. https://doi.org/10.1007/s11633-015-0892-z
Citation: Xi-Sheng Dai, Sen-Ping Tian and Ya-Jun Guo. Iterative Learning Control for Discrete Parabolic Distributed Parameter Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 316-322, 2015. https://doi.org/10.1007/s11633-015-0892-z

Iterative Learning Control for Discrete Parabolic Distributed Parameter Systems

doi: 10.1007/s11633-015-0892-z
Funds:

This work was supported by National Natural Science Foundation of China (Nos. 61364006 and 61374104), Guangxi Higher Education Science Research Projection (No. 201203YB125) and Project of Outstanding Young Teachers Training in Higher Education Institutions of Guangxi.

  • Received Date: 2014-05-30
  • Rev Recd Date: 2014-11-06
  • Publish Date: 2015-06-01
  • In this paper, iterative learning control (ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved. To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking error. A numerical example is given to illustrate the effectiveness of the proposed method.

     

  • loading
  • [1]
    J. Sklansky. Learning systems for automatic control. IEEE Transactions on Automatic Control, vol. 11, no. 1, pp. 6-19, 1966.
    [2]
    K. S. Fun. Learning control systems: Review and outlook. IEEE Transactions on Automatic Control, vol. 15, no. 2, pp. 210-221, 1970.
    [3]
    S. Arimoto, S. Kawamura, F. Miyazaki. Bettering operation of robots by learning. Journal of Robotic Systems, vol.1, no. 2, pp. 123-140, 1984.
    [4]
    S. R. Oh, Z. Bien, I. Suh. An iterative learning control method with application to robot manipulators. IEEE Journal of Robot and Automation, vol. 4, no. 5, pp. 508-514, 1988.
    [5]
    Z. S. Hou, J. X. Xu, H. W. Zhong. Freeway traffic control using iterative learning control based ramp metering and speed signaling. IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 466-477, 2007.
    [6]
    Z. S. Hou, J. X. Xu. Iterative learning control approach for ramp metering. Journal of Control Theory and Applications, vol. 3, no. 1, pp. 27-34, 2005.
    [7]
    Z. S. Hou, S. T. Jin, M. Zhao. Iterative learning identification for the macroscopic traffic. Acta Automatica Sinica, vol. 34, no. 1, pp. 64-71, 2008.
    [8]
    Y. Wang, E. Dassau, F. J. Doyle III. Close-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Transactions on Biomedical Engineering, vol. 57, no. 2, pp. 211-219, 2010.
    [9]
    M. X. Sun, B. J. Huang. Iterative Learning Control, Beijing, China: National Defence Industry Press, 1999. (in Chinese)
    [10]
    S. L. Xie, S. P. Tian, Z. D. Xie. Theory and Application of Iterative Learning Control, Beijing, China: Science Press, pp. 82-102, 2005. (in Chinese)
    [11]
    H. B. Xu, Z. S. Hou. Stability of iterative learning control with data dropouts via asynchronous dynamical system. International Journal of Automation and Computing, vol.8, no. 1, pp. 29-36, 2011.
    [12]
    D. Li, J. M. Li. Adaptive iterative learning control for nonlinearly parameterized systems with unknown time-varying delays and unknown control direction. International Journal of Automation and Computing, vol. 9, no. 6, pp. 578-586, 2012.
    [13]
    Z. Y. Huo, Z. Yang, Y. J. Pang. Set-point-related indirect iterative learning control for multi-input multi-output systems. International Journal of Automation and Computing, vol. 9, no. 3, pp. 266-273, 2012.
    [14]
    R. H. Chi, Z. S. Hou. Dual-stage optimal iterative learning control for nonlinear non-affine discrete-time systems. Acta Automatica Sinica, vol. 32, no. 10, pp. 1061-1065, 2007.
    [15]
    H. F. Chen. Almost sure convergence of iterative learning control for stochastic systems. Science in China (Series F): Information Science, vol. 46, no. 1, pp. 67-70, 2003.
    [16]
    J. H. Choi, B. J. Seo, K. S. Lee. Constrained digital regulation of hyperbolic PDE systems: A learning control approach. Korean Journal of Chemical Engineering, vol. 18, no. 5, pp. 606-611, 2001.
    [17]
    Z. H. Qu. An iterative learning algorithm for boundary control of a stretched moving string. Automatica, vol. 38, no. 5, pp. 821-827, 2002.
    [18]
    C. Xu, A. Reza, S. Eugenio. On iterative learning control of parabolic distributed parameter systems. In Proceedings of the 17th Mediterranean Conference on Control and Automation, IEEE, Thessaloniki, Greece, pp. 510-515, 2009.
    [19]
    H. Y. Zhao, C. D. Rahn. Iterative learning velocity and tension control for single span axially moving materials. Journal of Dynamic System Measure Control, vol. 130, no. 5, Article number 051003, 2008.
    [20]
    D. Q. Huang, J. X. Xu. Steady-state iterative learning control for a class of nonlinear PDE processes. Journal of Process Control, vol. 21, no. 8, pp. 1155-1163, 2011.
    [21]
    D. Q. Huang, J. X. Xu, X. F. Li, C. Xu, M. Yu. D-type anticipatory iterative learning control for a class of inhomogeneous heat equations. Automatica, vol. 49, no. 8, pp. 2397-2408, 2013.
    [22]
    B. Cichy, K. Gakowski, E. Rogers. Iterative learning control for spatio-temporal dynamics using Crank-Nicholson discretization. Multidimensional Systems and Signal Processing, vol. 23, no. 1-2, pp. 185-208, 2012.
    [23]
    B. G. Zhang, Y. Zhou. Qualitative analysis of delay partial difference equations. Contemporary Mathematics and Its Applications, vol. 4, New York, USA: Hindawi Publishing Corporation, 2007.
    [24]
    S. T. Liu, Y. Q. Liu, F. Q. Deng. Oscillation for nonlinear delay partial difference equations with positive and negative coefficients. Computer and Mathematics with Applications, vol. 43, no. 10-11, pp. 1219-1230, 2002.
    [25]
    J. Y. W. Patricia, P. A. Ravi. Asymptotic behaviour of solutions of higher order difference and partial difference equations with distributed deviating arguments. Applied Mathematics and Computation, vol. 97, no. 2-3, pp. 139-164, 1998.
    [26]
    X. P. Li. Partial difference equation used in the study of molecular orbits. Acta Chimica Sinica, vol. 40, no. 8, pp. 688-698, 1982. (in Chinese)
    [27]
    S. L. Xie, S. S. Cheng. Stability criteria for parabolic type partial difference equations. Journal of Computational and Applied Mathematics, vol. 75, no. 1, pp. 57-66, 1996.
    [28]
    S. S. Cheng, R. Medina. Positive and bounded solutions of discrete reaction-diffusion equations. Applied Mathematics E-Notes, vol. 2, no. 1, pp. 110-116, 2002.
    [29]
    P. Kachroo, K. Ozbay. Feedback Ramp Metering in Intelligent Transportation Systems, New York, USA: Kluwer Academic/ Plenum Publisher, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (4249) PDF downloads(1390) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return