Citation: | Xiao-E Ruan, Zhao-Zhen Li and Z. Z. Bien. Discrete-frequency Convergence of Iterative Learning Control for Linear Time-invariant systems with Higher-order Relative Degree. International Journal of Automation and Computing, vol. 12, no. 3, pp. 281-288, 2015. https://doi.org/10.1007/s11633-015-0884-z |
[1] |
S. Arimoto, S. Kawamura, F. Miyazaki. Bettering operation of robots by learning. Journal of Robotic Systems, vol.1, no. 2, pp. 123-140, 1984.
|
[2] |
K. L. Moore. Iterative learning control: An expository overview. Applied and Computational Control, Signals, and Circuits, vol. 1, pp. 151-214, 1999.
|
[3] |
Y. Q. Chen, K. L. Moore. A practical iterative learning path-following control of an omni-directional vehicle. Asian Journal of Control, vol. 4, no. 1, pp. 90-98, 2002.
|
[4] |
Z. Bien, K. M. Huh. Higher-order iterative learning control algorithm. IEE Proceedings: Control Theory and Applications, vol. 136, no. 3, pp. 105-112, 1989.
|
[5] |
K. L. Moore, J. X. Xu. Special issue on iterative learning control. International Journal of Control, vol. 73, no. 10, pp. 819-823, 2000.
|
[6] |
X. E. Ruan, Z. Z. Bien, Q. Wang. Convergence properties of iterative learning control processes in the sense of the Lebesgue-p norm. Asian Journal of Control, vol. 14, no. 4, pp. 1095-1107, 2012.
|
[7] |
M. X. Sun, D. W.Wang, G. Y. Xu. Initial shift problem and its ILC solution for nonlinear systems with higher relative degree. In Proceedings of the American Control Conference, IEEE, Chicago, USA, vol. 1, no. 6, pp. 277-281, 2000.
|
[8] |
Z. Q. Song, J. Q. Mao, S. W. Dai. First-order D-type iterative learning control for nonlinear systems with unknown relative degree. Acta Automatica Sinica, vol. 31, no. 4, pp. 555-561, 2006.
|
[9] |
M. X. Sun, D. W. Wang, G. Y. Xu. Sampled-data iterative learning control for SISO nonlinear systems with arbitrary relative degree. In Proceedings of the American Control Conference, vol. 1, no. 6, pp. 667-671, 2000.
|
[10] |
M. X. Sun, D. W. Wang. Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree. IEEE Transactions on Automatic Control, vol. 46, no. 5, pp. 783-788, 2001.
|
[11] |
X. E. Ruan, Q. Wang, J. Wang. Convergence property of relative degree-based iterative learning control in the sense of Lebesgue-p norm. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 2446-2449, 2011.
|
[12] |
D. W. Wang, Y. Q. Ye. Design and experiments of anticipatory learning control: Frequency-domain approach. IEEE/ASME Transactions on Mechatronics, vol. 10, no. 3, pp. 305-313, 2005.
|
[13] |
H. S. Li, Y. Q. Chen, J. H. Zhang, X. L. Wen. A tuning algorithm of PD-type iterative learning control. In Proceedings of the Chinese Control and Decision Conference, IEEE, Xuzhou, China, pp. 1-6, 2010.
|
[14] |
D. Y. Meng, Y. M. Jia, J. P. Du, F. S. Yu. Frequencydomain approach to robust iterative learning controller design for uncertain time-delay systems. In Proceedings of the Joint 48th IEEE Conference on Decision and 28th Chinese Control Conference, IEEE, Shanghai, China, pp. 4870-4875, 2009.
|
[15] |
A. Isidori. Nonlinear Control Systems, London, UK: Springer-Verlag, 1995.
|
[16] |
A. Pinkus. Fourier Series and Integral Transforms, Cambridge, UK: Cambridge University Press, 1997.
|
[17] |
S. Salivahanan, A. Vallavaraj, C. Gnanaapriya. Digital Signal Processing, New Delhi, India: McGraw-Hill, 2000.
|