Citation: | Imen Manaa, Nabil Barhoumi and Faouzi Msahli. Global Stability Analysis of Switched Nonlinear Observers. International Journal of Automation and Computing, vol. 12, no. 4, pp. 432-439, 2015. https://doi.org/10.1007/s11633-014-0855-9 |
[1] |
P. J. Antsaklis. A brief introduction to the theory and applications of hybrid systems. Proceedings of the IEEE vol. 88, no. 7, pp. 879-889, 2000.
|
[2] |
S. Pettersson, B. Lennartson. Modelling, analysis and synthesis of hybrid systems. In Proceedings of Conference on Preprints of Reglernote, Lulua, Sweden, 1996.
|
[3] |
S. S. Ge., Z. D. Sun. Switched Linear Systems: Control and Design, London, UK: Springer, 2005.
|
[4] |
M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid system. IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475-482, 1998.
|
[5] |
D. Liberzon, A. S. Morse. Basic problems in stability and design of switched systems. IEEE Control Systems, vol. 19, no. 5, pp. 59-70, 1999.
|
[6] |
X. L. Liang, M. Z. Hou, G. R. Duan. Output feedback stabilization of switched stochastic nonlinear systems under arbitrary switchings. International Journal of Automation and Computing, vol. 10, no. 6, pp. 571-577, 2013.
|
[7] |
A. Alessendri, P. Coletta. Design of Luenberger observers for a class of hybrid linear systems. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2034, pp. 7-18, 2001.
|
[8] |
M. De La Sen, N. S. Luo. Design of linear observers for a class of linear hybrid systems. International Journal of Systems Science, vol. 31, no. 9, pp. 1077-1099, 2000.
|
[9] |
A. L. Juloski,W. P.M. H. Heemels, Y. Boers, F. Verschure. Two approaches to state estimation for a class of piecewise affine systems. In Proceedings of the 42nd Conference on Decision and Control, IEEE, Maul, USA, vol. 1, pp. 143-148, 2003.
|
[10] |
Z. G. Lia, C. Y. Wenb, Y. C. Sohb. Observer-based stabilization of switching linear systems. Automatica, vol. 39, no. 3, pp. 517-524, 2003.
|
[11] |
A. Balluchi, L. Benvenuti, M. D. Di Benedetto, A. L. Sangiovanni-Vincentelli. Design of observers for hybrid system. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2289, pp. 76-89, 2002.
|
[12] |
F. Hamdia, N. Manamannia, N. Messai, K. Benmahammed. Hybrid observer design for linear switched system via Differential Petri Nets. Nonlinear Analysis: Hybrid Systems, vol. 3, no. 3, pp. 310-322, 2009.
|
[13] |
A. Alessandri, P. Coletta. Switching observers for continuous-time and discrete-time linear systems. In Proceedings of the American Control Conference, IEEE, Arlington, USA, vol. 3, pp. 2516-2521, 2001.
|
[14] |
S. Pettersson. Observer design for switched systems using multiple quadratic Lyapunov functions. In Proceedings of IEEE International Symposium on Mediterrean Conference on Control and Automation Intelligent Control, IEEE, Limassol, Cyprus, pp. 262-267, 2005.
|
[15] |
M. Djemai, N. Manamani, J. P. Barbot. Sliding mode observer for triangular input hybrid system. In Proceedings of the 16th IFAC World Congress, IFAC, Prague, Czekh, vol. 16, no. 1, pp. 314-319, 2005.
|
[16] |
H. Saadaoui, N. Manamanni, M. Djemai, J. P. Barbot, T. Floquet. Exact differentiation and sliding mode observer for switched Lagrangian systems. Nonlinear Analysis: Theory, Methods and Applications, vol. 65, no. 5, pp. 1050-1069, 2006.
|
[17] |
J. P. Barbot, H. Saadaoui, M. Djemai, N. Manamani. Nonlinear observer for autonomous switching systems with jumps. Nonlinear Analysis: Hybrid Systems, vol. 1, no. 4, pp. 537-547, 2007.
|
[18] |
M. Farza, M. M Saad, M. Sekher. A set of observers for a class of nonlinear systems. In Proceedings of the 16th IFAC World Congress, Praque, Czekh vol. 16, no. 1, pp. 782-782, 2005.
|
[19] |
J. P. Gauthier, H. Hammouri, S. Othman. A simple observer for nonlinear systems-applications to bioreactors. IEEE Transactions on Control Systems Technology, vol. 37, no. 6, pp. 875-880, 1992.
|
[20] |
H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
|
[21] |
N. Barhoumi, F. M Sahli, M. Djemai, K. Busawon. Observer design for some classes of uniformly observable nonlinear hybrid systems. Nonlinear Analysis: Hybrid Systems, vol. 6, no. 4, pp. 917-929, 2012.
|
[22] |
K. H. Johansson. The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp. 456-465, 2000.
|