Imen Manaa, Nabil Barhoumi and Faouzi Msahli. Global Stability Analysis of Switched Nonlinear Observers. International Journal of Automation and Computing, vol. 12, no. 4, pp. 432-439, 2015. https://doi.org/10.1007/s11633-014-0855-9
Citation: Imen Manaa, Nabil Barhoumi and Faouzi Msahli. Global Stability Analysis of Switched Nonlinear Observers. International Journal of Automation and Computing, vol. 12, no. 4, pp. 432-439, 2015. https://doi.org/10.1007/s11633-014-0855-9

Global Stability Analysis of Switched Nonlinear Observers

doi: 10.1007/s11633-014-0855-9
  • Received Date: 2014-01-01
  • Rev Recd Date: 2014-04-02
  • Publish Date: 2015-08-01
  • This paper considers the problem of simultaneous estimation of the system states and the strategy of commutation for a larger class of nonlinear switched systems. First, a hybrid high gain observer is considered to get the exact estimation of the continuous states where the strategy of switching is previously known. Then, an extension to a larger class of nonlinear hybrid systems with arbitrary switching is made. Stability analysis is widely discussed for the two cases to provide a finite-time convergence of the estimation errors. The effectiveness of the proposed hybrid high gain observer has been proved by applying it to a quadruple tank process.

     

  • loading
  • [1]
    P. J. Antsaklis. A brief introduction to the theory and applications of hybrid systems. Proceedings of the IEEE vol. 88, no. 7, pp. 879-889, 2000.
    [2]
    S. Pettersson, B. Lennartson. Modelling, analysis and synthesis of hybrid systems. In Proceedings of Conference on Preprints of Reglernote, Lulua, Sweden, 1996.
    [3]
    S. S. Ge., Z. D. Sun. Switched Linear Systems: Control and Design, London, UK: Springer, 2005.
    [4]
    M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid system. IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475-482, 1998.
    [5]
    D. Liberzon, A. S. Morse. Basic problems in stability and design of switched systems. IEEE Control Systems, vol. 19, no. 5, pp. 59-70, 1999.
    [6]
    X. L. Liang, M. Z. Hou, G. R. Duan. Output feedback stabilization of switched stochastic nonlinear systems under arbitrary switchings. International Journal of Automation and Computing, vol. 10, no. 6, pp. 571-577, 2013.
    [7]
    A. Alessendri, P. Coletta. Design of Luenberger observers for a class of hybrid linear systems. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2034, pp. 7-18, 2001.
    [8]
    M. De La Sen, N. S. Luo. Design of linear observers for a class of linear hybrid systems. International Journal of Systems Science, vol. 31, no. 9, pp. 1077-1099, 2000.
    [9]
    A. L. Juloski,W. P.M. H. Heemels, Y. Boers, F. Verschure. Two approaches to state estimation for a class of piecewise affine systems. In Proceedings of the 42nd Conference on Decision and Control, IEEE, Maul, USA, vol. 1, pp. 143-148, 2003.
    [10]
    Z. G. Lia, C. Y. Wenb, Y. C. Sohb. Observer-based stabilization of switching linear systems. Automatica, vol. 39, no. 3, pp. 517-524, 2003.
    [11]
    A. Balluchi, L. Benvenuti, M. D. Di Benedetto, A. L. Sangiovanni-Vincentelli. Design of observers for hybrid system. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2289, pp. 76-89, 2002.
    [12]
    F. Hamdia, N. Manamannia, N. Messai, K. Benmahammed. Hybrid observer design for linear switched system via Differential Petri Nets. Nonlinear Analysis: Hybrid Systems, vol. 3, no. 3, pp. 310-322, 2009.
    [13]
    A. Alessandri, P. Coletta. Switching observers for continuous-time and discrete-time linear systems. In Proceedings of the American Control Conference, IEEE, Arlington, USA, vol. 3, pp. 2516-2521, 2001.
    [14]
    S. Pettersson. Observer design for switched systems using multiple quadratic Lyapunov functions. In Proceedings of IEEE International Symposium on Mediterrean Conference on Control and Automation Intelligent Control, IEEE, Limassol, Cyprus, pp. 262-267, 2005.
    [15]
    M. Djemai, N. Manamani, J. P. Barbot. Sliding mode observer for triangular input hybrid system. In Proceedings of the 16th IFAC World Congress, IFAC, Prague, Czekh, vol. 16, no. 1, pp. 314-319, 2005.
    [16]
    H. Saadaoui, N. Manamanni, M. Djemai, J. P. Barbot, T. Floquet. Exact differentiation and sliding mode observer for switched Lagrangian systems. Nonlinear Analysis: Theory, Methods and Applications, vol. 65, no. 5, pp. 1050-1069, 2006.
    [17]
    J. P. Barbot, H. Saadaoui, M. Djemai, N. Manamani. Nonlinear observer for autonomous switching systems with jumps. Nonlinear Analysis: Hybrid Systems, vol. 1, no. 4, pp. 537-547, 2007.
    [18]
    M. Farza, M. M Saad, M. Sekher. A set of observers for a class of nonlinear systems. In Proceedings of the 16th IFAC World Congress, Praque, Czekh vol. 16, no. 1, pp. 782-782, 2005.
    [19]
    J. P. Gauthier, H. Hammouri, S. Othman. A simple observer for nonlinear systems-applications to bioreactors. IEEE Transactions on Control Systems Technology, vol. 37, no. 6, pp. 875-880, 1992.
    [20]
    H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
    [21]
    N. Barhoumi, F. M Sahli, M. Djemai, K. Busawon. Observer design for some classes of uniformly observable nonlinear hybrid systems. Nonlinear Analysis: Hybrid Systems, vol. 6, no. 4, pp. 917-929, 2012.
    [22]
    K. H. Johansson. The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp. 456-465, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (3928) PDF downloads(1325) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return