Citation: | Zhong-Hua Hao, Shi-Wei Ma and Fan Zhao. Atlas Compatibility Transformation: A Normal Manifold Learning Algorithm. International Journal of Automation and Computing, vol. 12, no. 4, pp. 382-392, 2015. https://doi.org/10.1007/s11633-014-0854-x |
[1] |
J. Tenenbaum, V. De Silva, J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
|
[2] |
S. Roweis, L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
|
[3] |
M. Belkin, P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, pp. 585-591, 2002.
|
[4] |
M. Brand. Charting a manifold. Advances in Neural Information Processing Systems, vol. 15, pp. 961-968, 2003.
|
[5] |
D. L. Donoho, C. Grimes. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. In Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5591-5596, 2003.
|
[6] |
Y. Teh, S. Roweis. Automatic alignment of hidden representations. Vancouver, Canoda, Neural Information Processing Systems 15, pp. 841-848, 2003.
|
[7] |
Z. Zhang, H. Zha. Principle manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, vol. 26, no. 1, pp. 313-338, 2004.
|
[8] |
Z. Zhang, J. Wang, H. Zha. Adaptive manifold learning. Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp. 253-365, 2012.
|
[9] |
T. Lin, H. Zha. Riemannian manifold learning. Pattern Analysis and Machine Intelligence, vol. 30, no. 5, pp. 796-809, 2008.
|
[10] |
R. Wang, S. Shan, X. Chen, J. Chen, W. Gao. Maximal linear embedding for dimensionality reduction. Pattern Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1776-1792, 2011.
|
[11] |
O. Tuzel, F. Porikli, P. Pedestrian detection via classification on Riemannian manifolds. Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1713-1727, 2008.
|
[12] |
A. Elgammal, C. Lee. Tracking people on a torus. Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 520-538, 2009.
|
[13] |
H. Yin. Nonlinear dimensionality reduction and data visualization: A review. International Journal of Automation and Computing, vol. 4, no. 3, pp. 294-303, 2007.
|
[14] |
G. Strang. Introduction to Linear Algebra, Cambridge, UK: Wellesley-Cambridge Press, 2009.
|
[15] |
T. Kohonen. Self-organizing Maps, Berlin, Germany: Springer-Verlag, 2001.
|
[16] |
J. S.Wang, X. D. Ren. GLCM based extraction of flame image texture features and KPCA-GLVQ recognition method for rotary kiln combustion working conditions. International Journal of Automation and Computing, vol. 11, no. 1, pp. 72-77, 2014.
|
[17] |
J. Ham, D. Lee, S. Mika, B. Schölkopf. A kernel view of the dimensionality reduction of manifolds. In Proceedings of the 21st International Conference on Machine Learning, Banff, Alberta, Canada, pp. 47-54, 2004.
|
[18] |
M. Balasubramanian, E. L. Schwartz. The isomap algorithm and topological stability. Science, vol. 295, no. 5552, pp. 7, 2002.
|
[19] |
M. H. Law, A. K. Jain. Incremental nonlinear dimensionality reduction by manifold learning. Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 377-391, 2006.
|
[20] |
R. R. Coifman, S. Lafon. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied and Computational Harmonic Analysis, vol. 21, no. 1, pp. 31-52, 2006.
|
[21] |
L. H. Wang, B. Z. Yuan. Curvature and density based feature point detection for point cloud data. In Proceedings of the 3rd IET International Conference on Wireless, Mobile and Multimedia Networks, IEEE, Beijing, China, pp. 377-380, 2010.
|