Chang-Jin Xu and Yu-Sen Wu. Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback. International Journal of Automation and Computing, vol. 12, no. 2, pp. 182-191, 2015. https://doi.org/10.1007/s11633-014-0852-z
Citation: Chang-Jin Xu and Yu-Sen Wu. Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback. International Journal of Automation and Computing, vol. 12, no. 2, pp. 182-191, 2015. https://doi.org/10.1007/s11633-014-0852-z

Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback

doi: 10.1007/s11633-014-0852-z
Funds:

This work is supported by National Natural Science Foundation of China (Nos. 11261010 and 11101126), Soft Science and Technology Program of Guizhou Province (No. 2011LKC2030), Natural Science and Technology Foundation of Guizhou Province (No. J[2012]2100), Governor Foundation of Guizhou Province (No. [2012]53) and Natu-ral Science and Technology Foundation of Guizhou Province (2014), and Natural Science Innovation Team Project of Guizhou Province (No. [2013]14).

  • Received Date: 2013-11-02
  • Rev Recd Date: 2014-03-19
  • Publish Date: 2015-04-01
  • In this paper, the problem of controlling chaos in a Sprott E system with distributed delay feedback is considered. By analyzing the associated characteristic transcendental equation, we focus on the local stability and Hopf bifurcation nature of the Sprott E system with distributed delay feedback. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions are derived by using the normal form theory and center manifold theory. Numerical simulations for justifying the theoretical analysis are provided.

     

  • loading
  • [1]
    E. Ott, C. Grebogi, J. A. York. Controlling chaos. Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990.
    [2]
    X. F. Liao, G. R. Chen, Hopf bifurcations and chaos analy-sis of chens system with distributed delays. Chaos, Solitons and Fractals, vol. 25, no. 1, pp. 197-220, 2005.
    [3]
    G. Corso, F. B. Rizzato. Hamiltonian bifurcation leading to chaos in a low-energy relativistic wave-particle system. Physica D, vol. 80, no. 3, pp. 296-306, 1995.
    [4]
    A. E. Gohary, A. S. Ruzaiza. Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos, Solitons and Fractals, vol. 34, no. 2, pp. 443-453, 2007.
    [5]
    Y. A. Kuznetsov, S. Rinaldi. Remarks on food chain dy-namics. Mathematical Biosciences, vol. 134, no. 1, pp. 1-33, 1996.
    [6]
    M. C. Varriale, A. A.Gomes. A study of a three species food chain. Ecological Modelling, vol. 110, no. 2, pp. 119-133, 1998.
    [7]
    F. Y. Wang, G. P. Pang. Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain. Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1366-1376, 2008.
    [8]
    J. G. Du, T. W. Huang, Z. H. Sheng, H. B. Zhang. A new method to control chaos in an economic system. Applied Mathematics and Computation, vol. 217, no. 6, pp. 2370-2380, 2010.
    [9]
    M. Sadeghpour, H. Salarieh, A. Alasty. Controlling chaos in tapping mode atomic force microscopes using improved minimum entropy control. Applied Mathematical Mod-elling, vol. 37, no. 3, pp. 1599-1606, 2013.
    [10]
    A. S. Hegazi, E. Ahmed, A. E. Matouk. On chaos control and synchronization of the commensurate fractional order Liu system. Communications in Nonlinear Science and Nu-merical Simulation, vol. 18, no. 5, pp. 1193-1202, 2013.
    [11]
    G. R. Chen. Controlling Chaos and Bifurcations in Engi-neering Systems, Boca Raton, FL: CRC Press, 1999.
    [12]
    X. S. Yang, G. R. Chen. Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, Solitons & Fractals, vol. 13, no. 6, pp. 1303-1308, 2002.
    [13]
    G. R. Chen, X. Dong. On feedback control of chaotic continuous-time systems. IEEE Transactions on Circuits and Systems, vol. 40, no. 9, pp. 591-601, 1993.
    [14]
    M. T. Yassen. Chaos control of Chen chaotic dynamical system. Chaos, Solitons & Fractals, vol. 15, no. 2, pp. 271-283, 2003.
    [15]
    H. N. Agiza. Controlling chaos for the dynamical system of coupled dynamos. Chaos, Solitons & Fractals, vol. 13, no. 2, pp. 341-352, 2002.
    [16]
    H. T. Zhao, Y. P. Lin, Y. X. Dai. Bifurcation analysis and control of chaos for a hybrid ratio-dependent three species food chain. Applied Mathematics and Computation, vol. 218, no. 5, pp. 1533-1546, 2011.
    [17]
    Y. L. Song, J. J. Wei. Bifurcation analysis for Chen's sys-tem with delayed feedback and its application to control of chaos. Chaos, Solitons & Fractals, vol. 22, no. 1, pp. 75-91, 2004.
    [18]
    E. W. Bai, K. E. Lonngren. Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals, vol. 11, no. 7, pp. 1041-1044, 2000.
    [19]
    M. T. Yassen. Adaptive control and synchronization of a modified Chua's circuit system. Applied Mathematics and Computation, vol. 135, no. 1, pp. 113-128, 2001.
    [20]
    T. L. Liao, S. H. Lin. Adaptive control and synchronization of Lorenz system. Journal of the Franklin Institute, vol. 336, no. 6, pp. 925-937, 1999.
    [21]
    H. Richter, K. J. Reinschke, H. Richter, K. J. Reinschke. Optimization of local control of chaos by an evolutionary algorithm. Physica D, vol. 144, no. 3-4, pp. 309-334, 2000.
    [22]
    R. Senkerik, I. Zelinka, D. Davendra, Z. Oplatkova. Utiliza-tion of SOMA and differential evolution for robust stabiliza-tion of chaotic Logistic equation. Computers & Mathemat-ics with Applications, vol. 60, no. 4, pp. 1026-1037, 2010.
    [23]
    I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, R. Jasek. An investigation on evolutionary reconstruction on contin-uous chaotic systems. Mathematical and Computer Mod-elling, vol. 57, no. 1-2, pp. 2-15, 2013.
    [24]
    M. Chadli, I. Zelinka, T. Youssef. Unknown inputs observer design for fuzzy systems with application to chaotic system reconstruction. Computers and Mathematics with Applica-tions, vol. 66, no. 2, pp. 147-154, 2013.
    [25]
    H. A. Yousef, M. Hamdy. Observer-based adaptive fuzzy control for a class of nonlinear time-delay systems. Interna-tional Journal of Automation and Computing, vol. 10, no. 4, pp. 275-280, 2013.
    [26]
    G. D. Zhao, N. Duan. A continuous state feedback con-troller design for high-order nonlinear systems with poly-nomial growth nonlinearities. International Journal of Au-tomation and Computing, vol. 10, no. 4, pp. 267-274, 2013.
    [27]
    X. Wang, G. R. Chen. A chaotic system with only one sta-ble equilibrium. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1264-1272, 2012.
    [28]
    J. C. Sprott. Simplest dissipative chaotic flow. Physics Let-ters A, vol. 228, no. 3-4, pp. 271-274, 1997.
    [29]
    X. Wang, G. R. Chen. Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics, vol. 71, no. 3, pp. 429-436, 2013.
    [30]
    B. Hassard, D. Kazarino, Y. Wan. Theory and Applications of Hopf bifurcation, Cambridge, UK: Cambridge University Press, 1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (4866) PDF downloads(1248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return