Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014. https://doi.org/10.1007/s11633-014-0846-x
Citation: Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014. https://doi.org/10.1007/s11633-014-0846-x

Simulation of Analog Costas Loop Circuits

doi: 10.1007/s11633-014-0846-x
Funds:

This work was supported by Academy of Finland, Russian Ministry of Education and Science (Federal Target Program), and Russian Foundation for Basic Research and Saint-Petersburg State University.

  • Received Date: 2013-09-26
  • Rev Recd Date: 2013-10-11
  • Publish Date: 2014-12-20
  • The analysis of stability and numerical simulation of Costas loop circuits for the high-frequency signals is a challenging task. The problem lies in the fact that it is necessary to observe very fast time scale of input signals and slow time scale of signal's phases simultaneously. To overcome this difficulty, it is possible to follow the classical ideas of Gardner and Viterbi to construct a mathematical model of Costas loop, in which only slow time change of signal's phases and frequencies is considered. Such an construction, in turn, requires the computation of phase detector characteristic, depending on the waveforms of the considered signals. In this paper, the problems of nonlinear analysis of Costas loops and the approaches to the simulation of the classical Costas loop, the quadrature phase shift keying (QPSK) Costas loop, and the two-phase Costas loop are discussed. The analytical method for the computation of phase detector characteristics of Costas loops is described.

     

  • loading
  • [1]
    R. E. Best. Phase Locked Loops: Design, Simulation, and Applications, 6th ed., New York: McGraw-Hill, 2007.
    [2]
    Y. Shmaliy. Continuous-time Systems, Netherlands: Springer, 2007.
    [3]
    F. M. Gardner. Phase-lock Techniques, New York: John Wiley and Son, 1966.
    [4]
    W. C. Lindsey, M. K. Simón. Telecommunication Systems Engineering, New jersey: Prentice Hall, 1973.
    [5]
    M. B. Pursley. Introduction to Digital Communications, New jersey: Prentice Hall, 2005.
    [6]
    J. P. Costas. Synchronous communications. Proceedings of the IRE, vol. 44, no. 12, pp. 1713-1718, 1956.
    [7]
    G.W.Waters. Costas Loop QPSK Demodulator, US Patent 4344178, USA, August 1982.
    [8]
    I. B. Djordjevic,M. C. Stefanovic, S. S. Ilic, G. T. Djordjevic. An example of a hybrid system: Coherent optical system with Costas loop in receiver-system for transmission in baseband. Journal of Lightwave Technology, vol. 16, no. 2, pp. 177-183, 1998.
    [9]
    E. D. Kaplan, C. J. Hegarty. Understanding GPS: Principles and Applications, Boston, USA: Artech House, 2006.
    [10]
    D. Doberstein. Fundamentals of GPS Receivers: A Hardware Approach, New York: Springer, 2011.
    [11]
    R. D. Stephens. Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations, New York: Springer, 2002.
    [12]
    Y. Wang, W. R. Leeb. A 90° optical fiber hybrid for optimal signal power utilization. Applied Optics, vol. 26, no. 19, pp. 4181-4184, 1987.
    [13]
    T. Miyazaki, S. Ryu, Y. Namihira, H. Wakabayashi. Optical Costas loop experiment using a novel optical 90° hybrid module and a semiconductor-laser-amplifier external phase adjuster. In Proceedings of Optical Fiber Communication, Optical Society of America, San Diego, California, pp.WH6, 1991.
    [14]
    I. B. Djordjevic, M. C. Stefanovic. Performance of optical heterodyne PSK Systems with Costas loop in multichannel environment for nonlinear second-order PLL model. Journal of Lightwave Technology, vol. 17, no. 12, pp. 2470-2479, 1999.
    [15]
    K. Hasegawa, H. Kanetsuna, M. Wakamori. GPS Positioning Method and GPS Reception Apparatus, EP Patent 1092987A2, USA, April 2001.
    [16]
    P. S. Cho. Optical phase-locked loop performance in homodyne detection using pulsed and CW LO. In Proceedings of Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Optical Society of America, Whistler, Canada, pp. JWB24, 2006.
    [17]
    Y. Hayami, F. Imai, K. Iwashita. Linewidth investigation for costas loop phase-diversity homodyne detection in digital coherent detection system. In Proceedings of the Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, IEEE, Shanghai, China, pp. 1-3, 2008.
    [18]
    G. M. Helaluddin. An improved optical costas loop PSK receiver: Simulation analysis. Journal of Scientific & Industrial Research, vol. 67, pp. 203-208, 2008.
    [19]
    N. Nowsheen, C. Benson, M. Frater. Design of a high frequency FPGA acoustic modem for underwater communication. In Proceedings of IEEE OCEANS, IEEE, Sydney, Australia, pp. 1-6, 2010.
    [20]
    D. Abramovitch. Phase-locked loops: A control centric tutorial. In Proceedings of the 2002 American Control Conference, IEEE, Anchorage, AK, USA, vol. 1, pp. 1-15, 2002.
    [21]
    D. Y. Abramovitch. Lyapunov Redesign of analog phaselock loops. IEEE Transactions on Communications, vol. 38, no. 12, pp. 2197-2202, 1990.
    [22]
    K. Watada, T. Endo, H. Seishi. Shilnikov orbits in an autonomous third-order chaotic phase-locked loop. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 9, pp. 979-983, 1998.
    [23]
    M. Hinz, I. Konenkamp, E. H. Horneber. Behavioral modeling and simulation of phase-locked loops for RF front ends. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, IEEE, Lansing, MI, USA, pp. 194-197, 2000.
    [24]
    A. Rantzer. Almost global stability of phase-locked loops. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, Orlando, FL, USA, vol. 1, pp. 899-900, 2001.
    [25]
    N. E. Wu. Analog phaselock loop design using Popov criterion. In Proceedings of the 2002 American Control Conference, IEEE, Anchorage, AK, USA, vol. 1, pp. 16-18, 2002.
    [26]
    J. R. C. Piqueira, L. H. A. Monteiro. Considering secondharmonic terms in the operation of the phase detector for second-order phase-locked loop. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 6, pp. 805-809, 2003.
    [27]
    A. Suarez, R. Quere. Stability Analysis of Nonlinear Microwave Circuits, New Jersey: Artech House, 2003.
    [28]
    W. I. Margaris. Theory of the Non-Linear Analog Phase Locked Loop, New Jersey: Springer Verlag, 2004.
    [29]
    G. D. Vendelin, A. M. Pavio, U. L. Rohde. Microwave Circuit Design Using Linear and Nonlinear Techniques, New York: Wiley, 2005.
    [30]
    P. Goyal, X. L. Lai, J. Roychowdhury. A fast methodology for first-time-correct design of PLLs using nonlinear phasedomain VCO macromodels. In Proceedings of the 2006 Asia and South Pacific Conference on Design Automation, IEEE, Yokohama, Japan, pp. 291-296, 2006.
    [31]
    V. V. Matrosov. Nonlinear dynamics of phase-locked loop with the second-order filter. Radiophysics and Quantum Electronics, vol. 49, no. 3, pp. 239-249, 2006.
    [32]
    J. Kudrewicz, S. Wasowicz. Equations of Phase-locked Loops: Dynamics on the Circle, Torus and Cylinder, vol. 59, Singapore: World Scientific Publishing Company, 2007.
    [33]
    O. Feely. Nonlinear dynamics of discrete-time circuits: A survey. International Journal of Circuit Theory and Applications, no. 35, no. 5-6, pp. 515-531, 2007.
    [34]
    N. V. Kuznetsov. Stability and Oscillations of Dynamical Systems: Theory and Applications, Jyväskylä: Jyväskylä University Printing House, 2008.
    [35]
    T. C. Wang, T. Y. Chiou, S. Lall. Nonlinear Phase-locked Loop design using semidefinite programming. In Proceedings of the 16th Mediterranean Conference on Control and Automation, IEEE, Ajaccio, France, pp. 1640-1645, 2008.
    [36]
    J. Stensby. VCO sweep-rate limit for a phase-lock loop. Journal of the Franklin Institute, vol. 346, no. 3, pp. 223-236, 2009.
    [37]
    C. Wiegand, C. Hedayat, U. Hilleringmann. Non-linear behaviour of charge-pump phase-locked loops. Advances in Radio Science, vol. 8, pp. 161-166, 2010.
    [38]
    P. F. Curran, C. Bi, O. Feely. Dynamics of charge-pump phase-locked loops. International Journal of Circuits Theory and Applications, vol. 41, no. 11, pp. 1109-1135, 2013.
    [39]
    A. Suarez, E. Fernandez, F. Ramirez, S. Sancho. Stability and bifurcation analysis of self-oscillating quasi-periodic regimes. IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 528-541, 2012.
    [40]
    T. Banerjee, B. C. Sarkar. Conventional and extended time-delayed feedback controlled zero-crossing digital phase locked loop. International Journal of Bifurcation and Chaos, vol. 22, no. 12, pp. 1230044, 2012.
    [41]
    A. S. Huque, J. Stensby. An analytical approximation for the pull-out frequency of a PLL employing a sinusoidal phase detector. ETRI Journal, vol. 35, no. 2, pp. 218-225, 2013.
    [42]
    C. Chicone, M. T. Heitzman. Phase-locked loops, demodulation, and averaging approximation time-scale extensions. SIAM Journal on Applied Dynamical Systems, vol. 12, no. 2, pp. 674-721, 2013.
    [43]
    M. C. Jeruchim, P. Balaban, K. S. Shanmugan. Simulation of Communication Systems: Modeling, Methodology and Techniques, New York: Springer, 2000.
    [44]
    D. Banerjee. PLL Performance, Simulation and Design, 4th ed., USA: Dog Ear Publishing, 2006.
    [45]
    D. O. Pederson, K. Mayaram. Analog Integrated Circuits for Communication: Principles, Simulation and Design, 2nd edition, New York: Springer, 2008.
    [46]
    W. Tranter, T. Bose, R. Thamvichai. Basic Simulation Models of Phase Tracking Devices Using MATLAB. Synthesis Lectures on Communications, San Rafael, CA, USA: Morgan & Claypool Publishers, 2010.
    [47]
    A. Al-Harasees, G. O. Al-Maaitah. Overshoot Improvement for Indirect Frequency Synthesizer Phase Locked Loop. International Journal of Electrical, Electronics and Computer Systems, vol. 15, no. 1, pp. 1011-1023, 2013.
    [48]
    D. Y. Abramovitch. Efficient and flexible simulation of phase locked loops, Part I: Simulator design. In Proceedings of the 2008 American Control Conference, IEEE, Seattle, WA, USA, pp. 4672-4677, 2008.
    [49]
    D. Y. Abramovitch. Efficient and flexible simulation of phase locked loops, Part II: Post processing and a design example. In Proceedings of the 2008 American Control Conference, IEEE, Seattle, WA, USA, pp. 4678-4683, 2008.
    [50]
    S. A. Tretter. Communication System Design Using DSP Algorithms: With Laboratory Experiments for the TMS320C6713TM DSK, New York: Springer, 2008.
    [51]
    X. L. Lai, Y. Y. Wan, J. S. Roychowdhury. Fast PLL simulation using nonlinear VCO macromodels for accurate prediction of jitter and cycle-slipping due to loop non-idealities and supply noise. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference, ACM Press, New York, USA, pp. 459-464, 2005.
    [52]
    A. Viterbi. Principles of Coherent Communication, New York: McGraw-Hill, 1966.
    [53]
    G. A. Leonov. Computation of phase detector characteristics in phase locked loops for clock synchronization. Doklady Mathematics, vol. 78, no. 1, pp. 643-645, 2008.
    [54]
    N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi. Nonlinear analysis of the Costas loop and phase-locked loop with squarer. In Proceedings of the IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA, pp. 1-7, 2009.
    [55]
    N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Nonlinear analysis of phase-locked loop. In Proceedings of the 4th IFAC International Workshop on Periodic Control Systems, IFAC, Turkey, pp. 34-38, 2010.
    [56]
    N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Highfrequency analysis of phase-locked loop and phase detector characteristic computation. In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, SciTePress, the Netherlands, vol. 1, pp. 272-278, 2011.
    [57]
    N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Analytical methods for computation of phasedetector characteristics and PLL design. In Proceedings of the 10th International Symposium on Signals, Circuits and Systems, IEEE, Iasi, Romania, pp. 1-4, 2011.
    [58]
    N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Nonlinear mathematical models of Costas Loop for general waveform of input signal. In Proceedings of the 4th IEEE International Conference on Nonlinear Science and Complexity, IEEE, Budapest, Hungary, pp. 75-80, 2012.
    [59]
    G. A. Leonov, N. V. Kuznetsov, M. V. Yuldahsev, R. V. Yuldashev. Analytical method for computation of phasedetector characteristic. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 633-637, 2012.
    [60]
    R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Discontinuity and complexity in nonlinear physical systems. Nonlinear Systems and Complexity, vol. 6, New York: Springer, 2014.
    [61]
    G. A. Leonov, N. V. Kuznetsov, M. V. Yuldahsev, R. V. Yuldashev. Computation of phase detector characteristics in synchronization systems. Doklady Mathematics, vol. 84, no. 1, pp. 586-590, 2011.
    [62]
    G. A. Leonov, N. V. Kuznetsov, S. M. Seledzhi. Analysis of phase-locked systems with discontinuous characteristics. In Proceedings of the 1st IFAC Conference on Analysis and Control of Chaotic Systems, IFAC, France, vol. 1, pp. 107-112, 2006.
    [63]
    N. V. Kuznetsov, G. A. Leonov, S. S. Seledzhi. Phase locked loops design and analysis. In Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, pp. 114-118, 2008.
    [64]
    N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Simulation of phase-locked loops in phase-frequency domain. In Proceedings of the 4th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, IEEE, St. Petersburg, Russia, pp. 351-356, 2012.
    [65]
    N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Nonlinear analysis of Costas loop circuit. In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, IFAC, Rome, Italy, vol. 1, pp. 557-560, 2012.
    [66]
    N. Krylov, N. Bogolyubov. Introduction to Non-linear Mechanics, Princeton: Princeton University Press, 1947.
    [67]
    Y. A. Mitropolsky, N. Bogolubov. Asymptotic Methods in the Theory of Non-linear Oscillations, New York: Gordon and Breach, 1961.
    [68]
    G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev. Differential equations of Costas loop. Doklady Mathematics, vol. 86, no. 2, pp. 723-728, 2012.
    [69]
    N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Analytical computation of phase-detector characteristics and dynamical model of Costas loop for nonsinusoidal signals. IEEE Transactions on Circuits and Systems I, to be published.
    [70]
    G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev. Analytical computation of phase-detector characteristics and dynamical model of QPSK Costas loop. Doklady Mathematics, to be published.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (5343) PDF downloads(7589) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return