Citation: | František GazdošIntroducing a New Tool for Studying Unstable Systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 580-587, 2014. https://doi.org/10.1007/s11633-014-0844-z |
[1] |
M. Chidambaram. Control of unstable systems: A review. Journal of Energy, Heat and Mass Transfer, vol. 19, pp. 49-57, 1997.
|
[2] |
R. Padma Sree, M. Chidambaram. Control of Unstable Systems, Oxford: Alpha Science Int. Ltd., 2006.
|
[3] |
G. Stein. Respect the unstable. IEEE Control System Magazine, vol. 23, no. 4, pp. 12-25, 2003.
|
[4] |
R. H. Middleton. Trade-offs in linear control system design. Automatica, vol. 27, no. 2, pp. 281-292, 1991.
|
[5] |
S. Skogestad, K. Havre, T. Larsson. Control limitations for unstable plants. In Proceedings of the 15th Triennial World Congress, IFAC, Barcelona, Spain, pp. 328, 2002.
|
[6] |
J. L. Willems. Stability Theory of Dynamical Systems, New York: Wiley, 1970.
|
[7] |
S. Skogestad, I. Postlethwaite. Multivariable Feedback Control: Analysis and Design, Chichester: Wiley, 2005.
|
[8] |
P. C. Parks. A. M. Lyapunov's stability theory-100 years on. IMA Journal of Mathematical Control and Information, vol. 9, no. 4, pp. 275-303, 1992.
|
[9] |
K. J. Åström, R. M. Murray. Feedback Systems: An Introduction for Scientist and Engineers, Princeton: Princeton University Press, 2008.
|
[10] |
J. C. Doyle, B. A. Francis, A. R. Tannenbaum. Feedback Control Theory, Mineola, New York: Dover Publications, 2009.
|
[11] |
J. H. Park, S. W. Sung, I. B. Lee. An enhanced PID control strategy for unstable processes. Automatica, vol. 34, no. 6, pp. 751-756, 1998.
|
[12] |
G. Marchetti, C. Scali, D. R. Lewin. Identification and control of open-loop unstable processes by relay methods. Automatica, vol. 37, no. 12, pp. 2049-2055, 2001.
|
[13] |
R. Lozano, P. Castillo, P. Garcia, A. Dzul. Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, vol. 40, no. 4, pp. 603-612, 2004.
|
[14] |
P. García, P. Albertos, T. Hägglund. Control of unstable non-minimum-phase delayed systems. Journal of Process Control, vol. 16, no. 10, pp. 1099-1111, 2006.
|
[15] |
P. Dostál, F. Gazdoš, V. Bobál. Design of controllers for time delay systems, Part II: Integrating and unstable systems. Journal of Electrical Engineering, vol. 59, no. 1, pp. 3-8, 2008.
|
[16] |
X. K. Zhang, X. L. Jia. Solving robust controller of unstable process using mirror-injection method. Systems Engineering and Electronics, vol. 22, no. 4, pp. 10-12, 2000.
|
[17] |
B. R. Barmish. New Tools for Robustness of Linear Systems, New York: Macmillan, 1994.
|
[18] |
S. P. Bhattacharyya, H. Chapellat, L. H. Keel. Robust Control: The Parametric Approach, New Jersey: Prentice-Hall, 1995.
|
[19] |
C. T. Liou, Y. S. Chien. The effect of nonideal mixing on input multiplicity in a CSTR. Chemical Engineering Science, vol. 46, no. 8, pp. 2113-2116, 1991.
|
[20] |
J. H. Blakelock. Automatic Control of Aircraft and Missiles, New York: John Wiley, 1991.
|
[21] |
W. L. Rogers, D. J. Collins. X-29 H∞ controller synthesis. Journal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 962-967, 1992.
|
[22] |
R. Clarke, J. J. Burken, J. T. Bosworth, J. E. Bauer. X-29 flight control system: Lessons learned. International Journal of Control, vol. 59, no. 1, pp. 199-219, 1994.
|
[23] |
AMIRA. PS600 Laboratory Experiment Inverted Pendulum, Amira GmbH, Duisburg, Germany, 2000.
|
[24] |
P. Chalupa, V. Bobál. Modelling and predictive control of inverted pendulum. In Proceedings of the 22nd European Conference on Modelling and Simulation, EDMS, Nicosia, Cyprus, pp. 531-537, 2008.
|
[25] |
J. Marholt, F. Gazdoš, P. Dostál. Control of the unstable system of the inverted pendulum using the polynomial approach. Cybernetic Letters, 2011.
|
[26] |
J. Kolařík. Web-based Database of Unstable Systems, Bachelor Dissertation, Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic, 2012. (in Czech)
|
[27] |
J. Marriott, E. Waring. The Official Joomla! Book, 2nd ed., Boston: Addison-Wesley Professional, 2013.
|
[28] |
V. Kučera. Diophantine equations in control-a survey. Automatica, vol. 29, no. 6, pp. 1361-1375, 1993.
|
[29] |
K. J. Hunt. Polynomial Methods in Optimal Control and Filtering, London: Peter Peregrinus Ltd., 1993.
|
[30] |
B. D. O. Anderson. From Youla-Kucera to identification, adaptive and nonlinear control. Automatica, vol. 34, no. 12, pp. 1485-1506, 1998.
|
[31] |
M. J. Grimble. Robust Industrial Control: Optimal Design Approach for Polynomial Systems, London: Prentice Hall, 1994.
|
[32] |
F. Gazdoš, J. Marholt, J. Kolařík. Unstable systems database: A new tool for students, teachers and scientists. In Proceedings of Nostradamus 2013: Prediction, Modeling & Analysis of Complex Systems, Springer, Ostrava, Czech Republic, pp. 275-284, 2013.
|