Wafa Bourbia, Farid Berrezzek and Bachir Bensaker. Circle-criterion Based Nonlinear Observer Design for Sensorless Induction Motor Control. International Journal of Automation and Computing, vol. 11, no. 6, pp. 598-604, 2014. https://doi.org/10.1007/s11633-014-0842-1
Citation: Wafa Bourbia, Farid Berrezzek and Bachir Bensaker. Circle-criterion Based Nonlinear Observer Design for Sensorless Induction Motor Control. International Journal of Automation and Computing, vol. 11, no. 6, pp. 598-604, 2014. https://doi.org/10.1007/s11633-014-0842-1

Circle-criterion Based Nonlinear Observer Design for Sensorless Induction Motor Control

doi: 10.1007/s11633-014-0842-1
  • Received Date: 2013-02-13
  • Rev Recd Date: 2013-12-02
  • Publish Date: 2014-12-20
  • This paper deals with the design of a nonlinear observer for sensorless induction motor control. Based upon the circle criterion approach, a nonlinear observer is designed to estimate pertinent but unmeasurable state variables of the considered induction machine for sensorless control purpose. The observer gain matrices are computed as a solution of linear matrix inequalities (LMI) that ensure the stability conditions of the state observer error dynamics in the sense of Lyapunov concepts. Measured and estimated state variables can be exploited to perform a state feedback control of the machine system. The simulation results are presented to illustrate the effectiveness of the proposed approach for nonlinear observer design.

     

  • loading
  • [1]
    B. Bensaker, H. Kherfane, A. Maouche, R. Wamkeue. Nonlinear modeling of induction motor drives for nonlinear sensorless control purposes. In Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems, IFAC, Stuttgart, Germany, vol. 3, pp. 1475-1480, 2004.
    [2]
    M. G. Campbell, J. Chiasson, M. Bodson, L. M. Tolbert. Speed sensorless identification of the rotor time constant in induction machines. IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 758-763, 2007.
    [3]
    R. Yazdanpanah, J. Soltani, G. R. A. Markadeh. Nonlinear torque and stator flux controller for induction motor drive based on adaptive input-output feedback linearization and sliding mode control. Energy Conversion and Management, vol. 49, pp. 541-550, 2008.
    [4]
    A. N. Atassi, H. K. Khalil. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems & Control Letters, vol. 39, no. 3, pp. 183-191, 2000.
    [5]
    N. Boizot, E. Busvelle, J. P. Gauthier. An adaptive highgain observer for nonlinear systems. Automatica, vol. 46, no. 9, pp. 1483-1488, 2010.
    [6]
    A. Zemmouche, M. Boutaeib. On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica, vol. 49, no. 2, pp. 585-591, 2013.
    [7]
    H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
    [8]
    L. P. Liu, Z. M. Fu, X. N. Song. Sliding mode control with disturbance observer for a class of nonlinear systems. International Journal of Automation and Computing, vol.9, no. 5, pp. 487-491, 2012.
    [9]
    J. Chen, E. Prempain, Q. H. Wu. Observer-based nonlinear control of a torque motor with perturbation estimation. International Journal of Automation and Computing, vol.3, no. 1, pp. 84-90, 2006.
    [10]
    M. Arcak, P. Kokotovic. Nonlinear observers: A circle criterion design and robustness analysis. Automatica, vol. 37, no. 12, pp. 1923-1930, 2001.
    [11]
    M. Arcak. Certainty-equivalence output-feedback design with circle-criterion observers. IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 905-909, 2005.
    [12]
    W. Bourbia, F. Berrezzek, B. Bensaker. A Circle-criterion based nonlinear observer design for induction motor conditions monitoring. In Proceedings of the 7th European Nonlinear Dynamics Conference, Roma, Italy, 2011.
    [13]
    S. Ibrir. Circle-criterion approach to discrete-time nonlinear observer design. Automatica, vol. 43, no. 8, pp. 1432-1441, 2007.
    [14]
    M. Chong, R. Postoyan, D. Nesic, L. Kuhlmann, A. Varsavsky. A robust circle criterion observer with application to neural mass models. Automatica, vol. 48, no. 11, pp. 2986-2989, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (5787) PDF downloads(1832) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return