Citation: | Wafa Bourbia, Farid Berrezzek and Bachir Bensaker. Circle-criterion Based Nonlinear Observer Design for Sensorless Induction Motor Control. International Journal of Automation and Computing, vol. 11, no. 6, pp. 598-604, 2014. https://doi.org/10.1007/s11633-014-0842-1 |
[1] |
B. Bensaker, H. Kherfane, A. Maouche, R. Wamkeue. Nonlinear modeling of induction motor drives for nonlinear sensorless control purposes. In Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems, IFAC, Stuttgart, Germany, vol. 3, pp. 1475-1480, 2004.
|
[2] |
M. G. Campbell, J. Chiasson, M. Bodson, L. M. Tolbert. Speed sensorless identification of the rotor time constant in induction machines. IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 758-763, 2007.
|
[3] |
R. Yazdanpanah, J. Soltani, G. R. A. Markadeh. Nonlinear torque and stator flux controller for induction motor drive based on adaptive input-output feedback linearization and sliding mode control. Energy Conversion and Management, vol. 49, pp. 541-550, 2008.
|
[4] |
A. N. Atassi, H. K. Khalil. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems & Control Letters, vol. 39, no. 3, pp. 183-191, 2000.
|
[5] |
N. Boizot, E. Busvelle, J. P. Gauthier. An adaptive highgain observer for nonlinear systems. Automatica, vol. 46, no. 9, pp. 1483-1488, 2010.
|
[6] |
A. Zemmouche, M. Boutaeib. On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica, vol. 49, no. 2, pp. 585-591, 2013.
|
[7] |
H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
|
[8] |
L. P. Liu, Z. M. Fu, X. N. Song. Sliding mode control with disturbance observer for a class of nonlinear systems. International Journal of Automation and Computing, vol.9, no. 5, pp. 487-491, 2012.
|
[9] |
J. Chen, E. Prempain, Q. H. Wu. Observer-based nonlinear control of a torque motor with perturbation estimation. International Journal of Automation and Computing, vol.3, no. 1, pp. 84-90, 2006.
|
[10] |
M. Arcak, P. Kokotovic. Nonlinear observers: A circle criterion design and robustness analysis. Automatica, vol. 37, no. 12, pp. 1923-1930, 2001.
|
[11] |
M. Arcak. Certainty-equivalence output-feedback design with circle-criterion observers. IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 905-909, 2005.
|
[12] |
W. Bourbia, F. Berrezzek, B. Bensaker. A Circle-criterion based nonlinear observer design for induction motor conditions monitoring. In Proceedings of the 7th European Nonlinear Dynamics Conference, Roma, Italy, 2011.
|
[13] |
S. Ibrir. Circle-criterion approach to discrete-time nonlinear observer design. Automatica, vol. 43, no. 8, pp. 1432-1441, 2007.
|
[14] |
M. Chong, R. Postoyan, D. Nesic, L. Kuhlmann, A. Varsavsky. A robust circle criterion observer with application to neural mass models. Automatica, vol. 48, no. 11, pp. 2986-2989, 2012.
|