Citation: | Kun Zhang, Min-Rui Fei and Hui-Yu Zhou. Using Entropy Based Mean Shift Filter and Modified Watershed Transform for Grain Segmentation. International Journal of Automation and Computing, vol. 12, no. 2, pp. 199-207, 2015. https://doi.org/10.1007/s11633-014-0841-2 |
[1] |
S. R. Delwiche, I. C. Yang, R. A. Graybosch. Multiple view image analysis of freefalling U.S. wheat grains for dam-age assessment. Computers and Electronics in Agriculture, vol. 98, pp. 62-73, 2013.
|
[2] |
Y. N. Wan. Kernel handling performance of an automatic grain quality inspection system. Transaction of the Ameri-can Society of Agriculture and Biological Engineers, vol. 45, no. 2, PP. 369-377, 2002.
|
[3] |
Y. Yoshioka, H. Iwata, M. Tabata, S. Ninomiya, R. Ohsawa. Chalkiness in rice: Potential for evaluation with image anal-ysis. Crop Science, vol. 47, no. 5, pp. 2113-2020, 2007.
|
[4] |
H. Gao, S. Kwong, J. J. Yang, J. J. Cao. Particle swarm op-timization based on intermediate disturbance strategy algo-rithm and its application in multi-threshold image segmen-tation. Information Sciences, vol. 250, pp. 82-112, 2013.
|
[5] |
A. R. Kavitha, C. Chellamuthu. Detection of brain tumour from MRI image using modified region growing and neu-ral network. The Imaging Science Journal, vol. 61, no. 7, pp. 556-567, 2013.
|
[6] |
Y. Xiang, J. F. He, L. Ma, S. L. Yi, J. P. Xu. A segmenta-tion method for multiple sclerosis white matter lesions on conventional magnetic resonance imaging based on kernel fuzzy clustering. Applied Mechanics and Materials, vol. 339, pp. 361-365, 2013.
|
[7] |
H. Y. Zhou, G. Schaefer, A. H. Sadka, M. E. Celebi. Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, vol. 30, no. 1, pp. 26-34, 2009.
|
[8] |
P. Shatadal, D. S. Jayas, N. R. Bulley. Digital image anal-ysis for software separation and classification of touching Grains: II. Classification. Transactions of the American So-ciety of Agriculture and Biological Engineers, vol. 38, no. 2, pp. 645-649, 1995.
|
[9] |
N. S. Shashidhar, D. S. Jayas, T. G. Crowe, N. R. Bulley. Processing of digital images of touching kernels by ellipse fitting. Canadian Agricultural Engineering, vol. 39, no. 2, pp. 39-142, 1997.
|
[10] |
E. H. Van den Berg, A. G. C. A. Meesters, J. A. M. Kenter, W. Schlager. Automated separation of touching grains in digital images of thin sections. Computers and Geosciences, vol. 28, no. 2, pp. 179-190, 2002.
|
[11] |
S. Q. Yang, D. J. He. Automated identification and sepa-ration of touching rice grains with machine vision. Journal of Agricultural Mechanization Research, no. 3, pp. 62-65, 2005. (in Chinese)
|
[12] |
L. Yang, O. Tuzel, P. Meer, D. J. Foran. Automatic image analysis of histopathology specimens using concave vertex graph. Medical Image Computing and Computer-Assisted Intervention, vol. 5241, pp. 833-841, 2008.
|
[13] |
L. Gao, S. Y. Yang, J. Xia, S. J Wang, J. L. Liang, H. Q. Li. New marker-based watershed algorithm. Acta Electronica Sinica, vol. 11, no. 34, pp. 2018-2023, 2006. (in Chinese)
|
[14] |
H. D. Cheng, X. H. Jiang, Y. Sun. Color image segmenta-tion: Advances and prospects. Pattern Recognition, vol. 34, no. 12, pp. 2259-2281, 2001.
|
[15] |
C. Vincent. Watersheds in digital spaces: An efficient algo-rithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583-598, 1991.
|
[16] |
E. Bengtsson, C. Wahlby, J. Lindblad. Robust cell im-age segmentation methods. Pattern Recognition and Image Analysis, vol. 14, no. 2, pp. 157-167, 2004.
|
[17] |
F. Meyer, S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, vol. 1, no. 1, pp. 21-46, 1990.
|
[18] |
P. He, K. L. Fang, X. H. Liu. Improved watershed algorithm based on morphology and distance transform. Applied Me-chanics and Materials, vol. 333-335, pp. 1071-1075, 2013.
|
[19] |
F. Meyer. Topographic distance and watershed lines. Signal Processing, vol. 38, no. 1, pp. 113-125, 1994.
|
[20] |
J. Roerdink, A. Meijster. The watershed transform: Defini-tions, algorithms and parallelization strategies. Mathemat-ical Morphology, vol. 41, no. 1-2, pp. 187-228, 2000.
|
[21] |
Y. Aliyari Ghassabeh, T. Linder, G. Takahara. On some convergence properties of the subspace constrained mean shift. Pattern Recognition, vol. 46, no. 11, pp. 3140-3147, 2013.
|
[22] |
R. C. Gonzalez, R. E. Woods. Digital Image Processing, 2nd ed. Electronics Industry House Publisher, pp. 172-178, 2007.
|
[23] |
P. K. Parlewar, K. M. Bhurchandi. A 4-quadrant curvelet transform for denoising digital images. International Jour-nal of Automation and Computing, vol. 10, no. 3, pp. 217-226, 2013.
|
[24] |
M. S. Pan, J. T. Tang, X. L. Yang. An adaptive median filter algorithm based on B-spline function. International Journal of Automation and Computing, vol. 8, no. 1, pp. 92-99, 2011.
|
[25] |
F. Liu, X. Liu, B. Zhang, J. Bai. Extraction of target fluo-rescence signal from in vivo background signal using image subtraction algorithm. International Journal of Automation and Computing, vol. 9, no. 3, pp. 232-236, 2012.
|
[26] |
P. E. Trahanias, A. N. Venetsanopoulos. Color edge detec-tion using vector order statistics. Color Edge Detection Us-ing Vector Order Statistics, vol. 2, no. 2, pp. 259-264, 1993.
|