René LoziDesigning Chaotic Mathematical Circuits for Solving Practical Problems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 588-597, 2014. https://doi.org/10.1007/s11633-014-0839-9
Citation: René LoziDesigning Chaotic Mathematical Circuits for Solving Practical Problems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 588-597, 2014. https://doi.org/10.1007/s11633-014-0839-9

Designing Chaotic Mathematical Circuits for Solving Practical Problems

doi: 10.1007/s11633-014-0839-9
  • Received Date: 2013-08-29
  • Rev Recd Date: 2013-11-04
  • Publish Date: 2014-12-20
  • We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry, especially in the frame of chaotic attractors for solving practical problems (generating hyperchaos; developing chaos based pseudo random number generator (CPRNG) and chaotic multistream PRNG; secure communication via synchronization). They can also be used in cryptography, generic algorithms in optimization, control, etc.

     

  • loading
  • [1]
    M. Arounassalame. Analysis of nonlinear electrical circuits using Bernstein polynomials. International Journal of Automation and Computing, vol. 9, no. 1, pp. 81-86, 2012.
    [2]
    S. Vaidyanathan, S. Sampath. Anti-synchronization of fourwing chaotic systems via sliding mode control. International Journal of Automation and Computing, vol. 9, no. 3, pp. 274-279, 2012.
    [3]
    L. Sheng, H. Z. Yang. H synchronization of chaotic systems via delayed feedback control. International Journal of Automation and Computing, vol. 7, no. 2, pp. 230-235, 2010.
    [4]
    L. O. Chua, M. Kumoro, T. Matsumoto. The double scroll family. IEEE Transactions on Circuit and Systems, vol. 33, no. 11, pp. 1072-1118, 1986.
    [5]
    R. Lozi, L. O. Chua. Secure communications via chaotic synchronization II: Noise reduction by cascading two identical receivers. International Journal of Bifurcation and Chaos, vol. 3, no. 5, pp. 1319-1325, 1993.
    [6]
    E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, vol. 20, no. 2, pp. 130-141, 1963.
    [7]
    O. E. Rössler. Chaotic behavior in simple reaction system. Zeitschrift für Naturforschung, vol.A31, pp. 259-264, 1976.
    [8]
    J. N. Blakely, M. B. Eskridge, N. J. Corron. A simple Lorenz circuit and its radio frequency implementation. Chaos, vol. 17, no. 2, Article no. 023112, 2007.
    [9]
    N. Datta, M. K. Mandal. Realisation of electronic circuit based on modified rössler system and its application in secure communication. Elixir Computer Science and Engineering, vol. 49, pp. 9845-9848, 2012.
    [10]
    J. C. Sprott. Chaos and Time-series Analysis, Oxford, UK: Oxford University Press, 2003.
    [11]
    R. Lozi. Un attracteur étrange (?) du type attracteur de Hénon. Journal de Physique, vol. 39, no.C5, pp. 9-10, 1978.
    [12]
    G. Gandhi. Electronic Realizations of Chaotic Circuits: From Breadboard to Nanotechnology, Ph.D. dissertation, Peter Pazmany Catholic University, Budapest, Hungary, 2008.
    [13]
    T. Kapitaniak, L. O. Chua, G. Q. Zhong. Experimental hyperchaos in coupled Chua's circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41 no. 7, pp. 499-503, 1994.
    [14]
    M. V. Petersen, H. M. Sorensen. Method of Generating Pseudo-random Numbers in an Electronic Device, and a Method of Encrypting and Decrypting Electronic Data, Patent No. 7170997, USA, 2007.
    [15]
    D. Ruggiero, D. Mascolo, I. Pedaci, P. Amato. Method of generating successions of pseudo-random bits or numbers, Patent No. 20060251250 A1, USA, 2006.
    [16]
    R. Lozi. Complexity Leads to Randomness in Chaotic Systems. Mathematics in Science and Technology: Mathematical Methods, Models and Algorithms in Science and Technology, A. H. Siddiqi, R. C. Singh, P. Manchanda, Eds., Singapore: World Scientific Publisher, pp. 93-125, 2001.
    [17]
    R. Lozi. Emergence of randomness from chaos. International Journal of Bifurcation and Chaos, vol. 22, no. 2, Article no. 1250021, 2012.
    [18]
    R. Lozi. Giga-periodic orbits for weakly coupled tent and logistic discretized maps. Modern Mathematical Models, Methods and Algorithms for Real World Systems, A. H. Siddiqi, I. S. Duff, O. Christensen, Eds., New Delhi, India: Anamaya Publishers, pp. 80-124, 2006.
    [19]
    R. Lozi. New enhanced chaotic number generators. Indian Journal of Industrial and Applied Mathematics, vol.1, no. 1, pp. 1-23, 2008.
    [20]
    A. Espinel, I. Taralova, R. Lozi. Dynamical and statistical analysis of a new Lozi function for random numbers generation. In Proceedings of the 5th International Conference on Physics and Control, León, Spain, IPACS open Access Electronic Library and Applications, pp. 5-8, 2011.
    [21]
    A. E. Rojas, I. Taralova, R. Lozi. New alternate ringcoupled map for multi-random number generation. Journal of Nonlinear Systems and Applications, vol. 4, no. 1, pp. 64-69, 2013.
    [22]
    L. O. Chua, L. Kocarev, K. Eckert, M. Itoh. Experimental chaos synchronization in Chua's circuit. International Journal of Bifurcation and Chaos, vol. 2 no. 3, pp. 705-708, 1992.
    [23]
    A. V. Oppenheim, G. W. Wornell, S. H. Isabelle, K. M. Cuomo. Signal processing in the context of chaotic signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, San Francisco, CA, USA, pp. 117-120, 1992.
    [24]
    L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, U. Parlitz. Experimental demonstration of secure communications via chaotic synchronization. International Journal of Bifurcation and Chaos, vol. 2, no. 3, pp. 709-713, 1992.
    [25]
    M. Delgado-Restituto, A. Rodríguez-Vasquez. A CMOS monolithic Chua's circuit. Journal of Circuits, Systems and Computers, vol. 3, no. 2, pp. 259-268, 1993.
    [26]
    M. A. Aziz Alaoui, R. Lozi. Secure communications via chaotic synchronization in Chua's circuit: Numerical analysis of the errors of the recovered signal. In Proceedings of Nonlinear Theory and Its Application, Kagoshima, Japan, pp. 145-148, 1994.
    [27]
    R. Lozi. Secure communications via chaotic synchronization in Chua's circuit and Bonhoeffer-Van der Pol equation: Numerical analysis of the errors of the recovered signal. In Proceedings of IEEE International Symposium on Circuits and Systems, IEEE, Seattle, WA, USA, vol. 1, pp. 684-687, 1995.
    [28]
    R. Lozi. Engineering of Mathematical Chaotic Circuits. Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, Advances in Intelligent Systems and Computing, I. Zelinka, G. Chen, O. E. Rössler, V. Snasel, A. Abraham, Eds., Switzerland: Springer, vol. 210, pp. 17-29, 2013.
    [29]
    M. Pluhacek, R. Senkerik, D. Davendra, I. Zelinka. Designing PID controller for DC motor system by means of enhanced PSO algorithm with discrete chaotic Lozi map. Soft Computing Models in Industrial and Environmental Applications Advances in Intelligent Systems and Computing, vol. 188, pp. 475-483, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (4621) PDF downloads(3358) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return