Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. https://doi.org/10.1007/s11633-014-0817-2
Citation: Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. https://doi.org/10.1007/s11633-014-0817-2

Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications

doi: 10.1007/s11633-014-0817-2
Funds:

This work was supported by Royal Golden Jubilee Ph. D. Program of the Thai Research Fund.

  • Received Date: 2013-02-15
  • Rev Recd Date: 2013-11-15
  • Publish Date: 2014-12-20
  • Piezoelectric actuators fundamentally possess hysteresis behavior. Estimation of the hysteresis is usually demanded for enhancing the performance of piezo-actuated systems. This paper presents an observer-based scheme to estimate the hysteresis in piezo—actuated flexible beams. The observer is based on a nonlinearity observer method. The discrete-time Kalman-filter algorithm is adopted for determination of the observer gains. The major advantages of the presented scheme include ease of implementation and robustness to uncertainty of hysteresis parameters. Simulation results demonstrate that the observer is able to estimate the hysteresis efficiently and has better robustness compared to the previous scheme existing in the literature. The present scheme was also successfully applied to a real-life system. Moreover, a control application example is included to demonstrate the effectiveness of the scheme.

     

  • loading
  • [1]
    J. F. Cuttiono, A. C. Jr. Miller, D. E. Schinstock. Performance optimization of a fast tool servo for single-point diamond turning machines. IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, pp. 169-179, 1999.
    [2]
    J. S. Xu, H. Guo. Study on driving and detection of microknife for minimally invasive surgery. In Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, Xiamen, China, pp. 919-923, 2010.
    [3]
    M. Kögl, M. L. Bucalem. Analysis of smart laminates using piezoelectric MITC plate and shell elements. Computers and Structures, vol. 83, no. 15-16, pp. 1153-1163, 2005.
    [4]
    H. Bossong, S. Lentzen, R. Schmidt. Experimental investigation and modelling of piezoelectric actuator hystereses for FE analysis of smart structures. Computational Methods and Experimental Measurements XII, C. A. Brebbia, G. M. Carlomagno, Eds., Southampton, UK: WIT Press, pp. 217-226, 2005.
    [5]
    Y. H. Yu, N. Naganathan, R. Dukkipati. Preisach modeling of hysteresis for piezoceramic actuator system. Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, 2002.
    [6]
    H. Bossong, R. Schmidt, D. Weichert. Numerical modelling of the hysteretic behaviour of piezoactuated structures. Shell Structures, Theory and Applications, W. Pietraszkiewicz, I. Kreja, Eds., London, UK: Taylor & Francis, vol. 2, pp. 283-286, 2010.
    [7]
    C. A. Jiang, M. C. Deng, A. Inoue. Robust stability of nonlinear plants with a non-symmetric Prandtl-Ishlinskii hysteresis model. International Journal of Automation and Computing, vol. 7, no. 2, pp. 213-218, 2010.
    [8]
    M. A. Janaideh, P. Krejčí. Prandtl-Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Physica B, vol. 407, no. 9, pp. 1365-1367, 2012.
    [9]
    J. H. Song, A. D. Kiureghian. Generalized Bouc-Wen model for highly asymmetric hysteresis. Journal of Engineering Mechanics, vol. 132, no. 6, pp. 610-618, 2006.
    [10]
    F. Ikhouane, J. E. Hurtado, J. Rodellar. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dynamics, vol. 48, no. 4, pp. 361-380, 2007.
    [11]
    M. Chen, C. S. Jiang, Q. X. Wu. Sensor fault diagnosis for a class of time delay uncertain nonlinear systems using neural network. International Journal of Automation and Computing, vol. 5, no. 4, pp. 401-405, 2008.
    [12]
    K. Mohamed, M. Chadli, M. Chaabane. Unknown inputs observer for a class of nonlinear uncertain systems: An LMI approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 331-336, 2012.
    [13]
    H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
    [14]
    L. Freidovich, A. Robertsson, A. Shiriaev, R. Johansson. LuGre-model-based friction compensation. IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 194-200, 2010.
    [15]
    L. P. Liu, Z. M. Fu, X. N. Song. Sliding mode control with disturbance observer for a class of nonlinear systems. International Journal of Automation and Computing, vol.9, no. 5, pp. 487-491, 2012.
    [16]
    R. B. Wiener. Nonlinear compensation for pneumatic actuators with hysteresis-precision control for microlithography. IEEE Control Systems Magazine, vol. 25, no. 6, pp. 32-44, 2005.
    [17]
    C. Ru, L. Chen, B. Shao, W. Rong, L. Sun. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, vol. 17, no. 9, pp. 1107-1114, 2009.
    [18]
    C. J. Lin, S. R. Yang. Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics, vol. 16, no. 1, pp. 417-426, 2006.
    [19]
    L. Juhász, J. Maas, B. Borovac. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics, vol. 21, no. 1, pp. 329-338, 2011.
    [20]
    L. Liu, K. K. Tan, S. L. Chen, S. Huang, T. H. Lee. SVD-based Preisach hysteresis identification and composite control of piezo actuators. ISA Transactions, vol. 51, no. 3, pp. 430-438, 2012.
    [21]
    P. C. Müller. Estimation and compensation of nonlinearities. In Proceedings of the 1st Asian Control Conference, Tokyo, Japan, vol. II, pp. 641-644, 1994.
    [22]
    D. Söffker, T. J. Yu, P. C. Müller. State estimation of dynamical systems with nonlinearities by using proportionalintegral observer. International Journal of Systems Science, vol. 26, no. 9, pp. 1571-1582, 1995.
    [23]
    P. C. Müller. Design of PI-observers and compensators for nonlinear control system. Advances in Mechanics, Dynamics and Control, F. L. Chernousko, G. V. Kostin, V. V. Saurin, Eds., Moscow, Russia: Nauka, pp. 223-231, 2008.
    [24]
    A. Girija, M. Umapathy, B. Bandyopadhyay, G. Uma, K. Dhanalakshmi. Discrete time sliding mode control for piezoelectric actuated structures. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Mumbai, India, pp. 1466-1471, 2006.
    [25]
    F. Heidtmann, I. Krajcin, D. Söffker. Observer-based control and disturbance compensation of elastic mechanical 2D-/3D-structures. In Proceedings of the 2nd International Conference on Dynamics, Vibration, and Control, IEEE, Beijing, China, pp. 23-26, 2006.
    [26]
    P. Nakkarat, S. Kuntanapreeda. Observer-based backstepping force control of an electrohydraulic actuator. Control Engineering Practice, vol. 17, no. 8, pp. 895-902, 2009.
    [27]
    S. V. Gosavi, A. G. Kelkar. Passivity-based robust control of piezo-actuated flexible beam. Transactions of ASME, vol. 126, no. 2, pp. 260-271, 2004.
    [28]
    A. E. Bryson, Y. C. Ho. Applied Optimal Control: Optimization, Estimation, and Control, New York: Hemisphere, 1975.
    [29]
    R. F. Stengle. Optimal Control and Estimation, New York, USA: Dover, 1994.
    [30]
    G. F. Franklin, J. D. Powell, M. L. Workman. Digital Control of Dynamic Systems, 3rd ed, New York: Addison- Wesley, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (4566) PDF downloads(2880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return