Citation: | Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. https://doi.org/10.1007/s11633-014-0817-2 |
[1] |
J. F. Cuttiono, A. C. Jr. Miller, D. E. Schinstock. Performance optimization of a fast tool servo for single-point diamond turning machines. IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, pp. 169-179, 1999.
|
[2] |
J. S. Xu, H. Guo. Study on driving and detection of microknife for minimally invasive surgery. In Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, Xiamen, China, pp. 919-923, 2010.
|
[3] |
M. Kögl, M. L. Bucalem. Analysis of smart laminates using piezoelectric MITC plate and shell elements. Computers and Structures, vol. 83, no. 15-16, pp. 1153-1163, 2005.
|
[4] |
H. Bossong, S. Lentzen, R. Schmidt. Experimental investigation and modelling of piezoelectric actuator hystereses for FE analysis of smart structures. Computational Methods and Experimental Measurements XII, C. A. Brebbia, G. M. Carlomagno, Eds., Southampton, UK: WIT Press, pp. 217-226, 2005.
|
[5] |
Y. H. Yu, N. Naganathan, R. Dukkipati. Preisach modeling of hysteresis for piezoceramic actuator system. Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, 2002.
|
[6] |
H. Bossong, R. Schmidt, D. Weichert. Numerical modelling of the hysteretic behaviour of piezoactuated structures. Shell Structures, Theory and Applications, W. Pietraszkiewicz, I. Kreja, Eds., London, UK: Taylor & Francis, vol. 2, pp. 283-286, 2010.
|
[7] |
C. A. Jiang, M. C. Deng, A. Inoue. Robust stability of nonlinear plants with a non-symmetric Prandtl-Ishlinskii hysteresis model. International Journal of Automation and Computing, vol. 7, no. 2, pp. 213-218, 2010.
|
[8] |
M. A. Janaideh, P. Krejčí. Prandtl-Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Physica B, vol. 407, no. 9, pp. 1365-1367, 2012.
|
[9] |
J. H. Song, A. D. Kiureghian. Generalized Bouc-Wen model for highly asymmetric hysteresis. Journal of Engineering Mechanics, vol. 132, no. 6, pp. 610-618, 2006.
|
[10] |
F. Ikhouane, J. E. Hurtado, J. Rodellar. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dynamics, vol. 48, no. 4, pp. 361-380, 2007.
|
[11] |
M. Chen, C. S. Jiang, Q. X. Wu. Sensor fault diagnosis for a class of time delay uncertain nonlinear systems using neural network. International Journal of Automation and Computing, vol. 5, no. 4, pp. 401-405, 2008.
|
[12] |
K. Mohamed, M. Chadli, M. Chaabane. Unknown inputs observer for a class of nonlinear uncertain systems: An LMI approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 331-336, 2012.
|
[13] |
H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
|
[14] |
L. Freidovich, A. Robertsson, A. Shiriaev, R. Johansson. LuGre-model-based friction compensation. IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 194-200, 2010.
|
[15] |
L. P. Liu, Z. M. Fu, X. N. Song. Sliding mode control with disturbance observer for a class of nonlinear systems. International Journal of Automation and Computing, vol.9, no. 5, pp. 487-491, 2012.
|
[16] |
R. B. Wiener. Nonlinear compensation for pneumatic actuators with hysteresis-precision control for microlithography. IEEE Control Systems Magazine, vol. 25, no. 6, pp. 32-44, 2005.
|
[17] |
C. Ru, L. Chen, B. Shao, W. Rong, L. Sun. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, vol. 17, no. 9, pp. 1107-1114, 2009.
|
[18] |
C. J. Lin, S. R. Yang. Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics, vol. 16, no. 1, pp. 417-426, 2006.
|
[19] |
L. Juhász, J. Maas, B. Borovac. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics, vol. 21, no. 1, pp. 329-338, 2011.
|
[20] |
L. Liu, K. K. Tan, S. L. Chen, S. Huang, T. H. Lee. SVD-based Preisach hysteresis identification and composite control of piezo actuators. ISA Transactions, vol. 51, no. 3, pp. 430-438, 2012.
|
[21] |
P. C. Müller. Estimation and compensation of nonlinearities. In Proceedings of the 1st Asian Control Conference, Tokyo, Japan, vol. II, pp. 641-644, 1994.
|
[22] |
D. Söffker, T. J. Yu, P. C. Müller. State estimation of dynamical systems with nonlinearities by using proportionalintegral observer. International Journal of Systems Science, vol. 26, no. 9, pp. 1571-1582, 1995.
|
[23] |
P. C. Müller. Design of PI-observers and compensators for nonlinear control system. Advances in Mechanics, Dynamics and Control, F. L. Chernousko, G. V. Kostin, V. V. Saurin, Eds., Moscow, Russia: Nauka, pp. 223-231, 2008.
|
[24] |
A. Girija, M. Umapathy, B. Bandyopadhyay, G. Uma, K. Dhanalakshmi. Discrete time sliding mode control for piezoelectric actuated structures. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Mumbai, India, pp. 1466-1471, 2006.
|
[25] |
F. Heidtmann, I. Krajcin, D. Söffker. Observer-based control and disturbance compensation of elastic mechanical 2D-/3D-structures. In Proceedings of the 2nd International Conference on Dynamics, Vibration, and Control, IEEE, Beijing, China, pp. 23-26, 2006.
|
[26] |
P. Nakkarat, S. Kuntanapreeda. Observer-based backstepping force control of an electrohydraulic actuator. Control Engineering Practice, vol. 17, no. 8, pp. 895-902, 2009.
|
[27] |
S. V. Gosavi, A. G. Kelkar. Passivity-based robust control of piezo-actuated flexible beam. Transactions of ASME, vol. 126, no. 2, pp. 260-271, 2004.
|
[28] |
A. E. Bryson, Y. C. Ho. Applied Optimal Control: Optimization, Estimation, and Control, New York: Hemisphere, 1975.
|
[29] |
R. F. Stengle. Optimal Control and Estimation, New York, USA: Dover, 1994.
|
[30] |
G. F. Franklin, J. D. Powell, M. L. Workman. Digital Control of Dynamic Systems, 3rd ed, New York: Addison- Wesley, 1997.
|