Rihem Farkh, Kaouther Laabidi and Mekki Ksouri. Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System. International Journal of Automation and Computing, vol. 11, no. 2, pp. 210-222, 2014. https://doi.org/10.1007/s11633-014-0783-8
Citation: Rihem Farkh, Kaouther Laabidi and Mekki Ksouri. Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System. International Journal of Automation and Computing, vol. 11, no. 2, pp. 210-222, 2014. https://doi.org/10.1007/s11633-014-0783-8

Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System

doi: 10.1007/s11633-014-0783-8
  • Received Date: 2013-01-13
  • Rev Recd Date: 2013-07-23
  • Publish Date: 2014-04-01
  • In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integral-derivative (PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasi-polynomials, is used to seek the set of complete stabilizing proportional-integral/proportional-integral-derivative (PI/PID) parameters. The range of admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral and derivative gains is shown to be a triangle.

     

  • loading
  • [1]
    S. I. Niculescu. Delay Effects on Stability, London: Springer, 2001.
    [2]
    Q. C. Zhong. Robust Control of Time Delay System, London: Springer, 2006.
    [3]
    M. Chidambaram. Control of unstable systems: A review. Journal of Energy Heat and Mass Transfer, vol.19, pp.49-56, 1997.
    [4]
    W. L. Bialkowski. Control of the pulp and paper making process. The Control Handbook, W. S. Levine, Ed., Boca Raton, Florida, USA: CRC/IEEE Press, pp.1219-1242, 1996.
    [5]
    K. J. AAström, T. Hägglund. PID Controllers: Theory, Design, and Tuning, 2nd ed., Research Triangle Park, NC: Instrument Society of America, 1995.
    [6]
    H. Takatsu, T. Itoh, M. Araki. Future needs for the control theory in industries-report and topics of the control technology survey in Japanese industry. Journal of Process Control, vol.8, no.5-6, pp.369-374, 1998.
    [7]
    A. M. De Paor, M. O'Malley. Controllers of Ziegler-Nichols type for unstable process with time delay. International Journal of Control, vol.49, no. 4, pp.1273-1284, 1989.
    [8]
    S. B. Jr. Quinn, C. K. Sanathanan. Controller design for integrating and runaway processes involving time delay. AIChE Journal, vol.35, no.6, pp.923-930, 1989.
    [9]
    Z. Shafiei, A. T. Shenton. Tuning of PID-type controllers for stable and unstable systems with time delay. Automatica, vol.30, no.10, pp.1609-1615, 1994.
    [10]
    R. Padma Sree, M. N. Sirinivas, M. Chidambaram. A simple method of tuning PID controllers for stable and unstable FOPTD systems. Computers and Chemical Engineering, vol.28, no.11, pp.2201-2218, 2004.
    [11]
    C. T. Huang, Y. S. Lin. Tuning PID controller for open-loop unstable processes with time delay. Chemical Engineering Communications, vol.133, no.11, pp.11-13, 1995.
    [12]
    E. D. Poulin, A. Pomerleau. PID tuning for integrating and unstable processes. IEE Proceedings-Control Theory and Application, vol.143, no.5, pp.429-434, 1996.
    [13]
    C. Hwang, J. H. Hwang. Stabilisation of first-order plus dead-time unstable processes using PID controllers. IEE Proceedings-Control Theory and Application, vol.151, no.1, pp.89-94, 2004.
    [14]
    C. Xiang, Q. G. Wang, X. Lu, L. A. Nguyen, T. H. Lee. Stabilization of second-order unstable delay processes by simple controllers. Journal of Process Control, vol.17, no.8, pp.675-682, 2007.
    [15]
    A. S. Rao, M. Chidambaram. Enhanced two-degrees-offreedom control strategy for second-order unstable processes with time delay. Industrial and Engineering Chemistry Research, vol.45, no.10, pp.3604-3614, 2006.
    [16]
    C. C. Chen, H. P. Huang, H. J. Liaw. Set-point weighted PID controller tuning for time-delayed unstable processes. Industrial and Engineering Chemistry Research, vol.47, no.18, pp.6983-6990, 2008.
    [17]
    M. Shamsuzzoha, J. Jeon, M. Le. Improved analytical PID controller design for the second order unstable process with time delay. Computer Aided Chemical Engineering, vol.24, pp.901-906, 2007.
    [18]
    R. C. Panda. Synthesis of PID controller for unstable and integrating processes. Chemical Engineering Science, vol.64, no.12, pp.2807-2816, 2009.
    [19]
    C. L. Zhang, J. M. Li. Adaptive iterative learning control for nonlinear time-delay systems with periodic disturbances using FSE-neural network. International Journal of Automation and Computing, vol.8, no.4, pp.403-410, 2011.
    [20]
    W. S. Chen, R. H. Li. Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays. International Journal of Automation and Computing, vol.7, no.4, pp.438-446, 2010.
    [21]
    Q. W. Deng, Q. Wei, Z. X. Li. Analysis of absolute stability for time-delay teleoperation systems. International Journal of Automation and Computing, vol.4, no.2, pp.203-207, 2007.
    [22]
    V. Kumar, A. P. Mittal. Parallel fuzzy P + fuzzy I + fuzzy D controller: Design and performance evaluation. International Journal of Automation and Computing, vol.7, no.4, pp.463-471, 2010
    [23]
    G. J. Silva, A. Datta, S. P. Bhattacharyya. PI stabilization of first-order systems with time delay. Automatica, vol.37, no.12, pp.2025-2031, 2001.
    [24]
    G. J. Silva, A. Datta, S. P. Bhattacharyya. New results synthesis of PID controller. IEEE Transactions on Automatic Control, vol.47, no.2, pp.241-252, 2002.
    [25]
    G. J. Silva, A. Datta, S. P. Bhattacharyya. PID Controllers for Time Delay Systems, London: Springer, 2005.
    [26]
    G. J. Silva, A. Datta, S. P. Bhattacharyya. Stabilization of time delay systems. In Proceedings of the American Control Conference, IEEE, Chicago, Illinois, USA, pp.963-970, 2000.
    [27]
    G. J. Silva, A. Datta, S. P. Bhattacharyya. Stabilization of first-order systems with time delay using the PID controller. In Proceedings of the American Control Conference, IEEE, Arlington, VA, USA, pp.4650-4655, 2001.
    [28]
    R. Farkh, K. Laabidi, M. Ksouri. PI control for second order delay system with tuning parameter optimization. International Journal of Electrical and Electronics Engineering, vol.3, pp.1-7, 2009.
    [29]
    R. Farkh, K. Laabidi, M. Ksouri. Computation of all stabilizing PID gain for second-order delay system. Mathematical Problem in Engineering, vol.2009, Article ID 212053, 17 pages, 2009.
    [30]
    R. Farkh, K. Laabidi, M. Ksouri. Robust stabilization for uncertain second order time-lag system. The Mediterranean Journal of Measurement and Control, vol.5, no.4, pp.138-145, 2009.
    [31]
    R. Farkh, K. Laabidi, M. Ksouri. Robust PI/PID controller for interval first order system with time delay. International Journal of Modelling Identification and Control, vol.13, no.1-2, pp.67-77, 2011.
    [32]
    H. P. Huang, C. C. Chen. Control-system synthesis for open-loop unstable process with time delay. IEE Proceedings-Control Theory and Application, vol.144, no.4, pp.334-346, 1997.
    [33]
    C. T. Huang, Y. S. Lin. Tuning PID controller for open-loop unstable processes with time delay. Chemical Engineering Communications, vol.133, no.11, pp.11-30, 1995.
    [34]
    Y. Lee, J. Lee, S. Park. PID controller tuning for integrating and unstable processes with time delay. Chemical Engineering Science, vol.55, no.17, pp.3481-3493, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (6608) PDF downloads(9538) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return