Zeineb Lassoued and Kamel Abderrahim. New Results on PWARX Model Identification Based on Clustering Approach. International Journal of Automation and Computing, vol. 11, no. 2, pp. 180-188, 2014. https://doi.org/10.1007/s11633-014-0779-4
Citation: Zeineb Lassoued and Kamel Abderrahim. New Results on PWARX Model Identification Based on Clustering Approach. International Journal of Automation and Computing, vol. 11, no. 2, pp. 180-188, 2014. https://doi.org/10.1007/s11633-014-0779-4

New Results on PWARX Model Identification Based on Clustering Approach

doi: 10.1007/s11633-014-0779-4
  • Received Date: 2013-03-18
  • Rev Recd Date: 2013-06-20
  • Publish Date: 2014-04-01
  • This paper deals with the problem of piecewise auto regressive systems with exogenous input (PWARX) model identification based on clustering solution. This problem involves both the estimation of the parameters of the affine sub-models and the hyper planes defining the partitions of the state-input regression. The existing identification methods present three main drawbacks which limit its effectiveness. First, most of them may converge to local minima in the case of poor initializations because they are based on the optimization using nonlinear criteria. Second, they use simple and ineffective techniques to remove outliers. Third, most of them assume that the number of sub-models is known a priori. To overcome these drawbacks, we suggest the use of the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The results presented in this paper illustrate the performance of our methods in comparison with the existing approach. An application of the developed approach to an olive oil esterification reactor is also proposed in order to validate the simulation results.

     

  • loading
  • [1]
    J. N. Lin, R. Unbehauen. Canonical piecewise-linear approximations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.39, no.8, pp.697-699, 1992.
    [2]
    X. Feng, K. A. Loparo, Y. Ji, H. J. Chizeck. Stochastic stability properties of jump linear systems. IEEE Transactions on Automatic Control, vol.37, no.1, pp.38-53, 1992.
    [3]
    A. Doucet, N. J. Gordon, V. Krishnamurthy. Particle filters for state estimation of jump Markov linear systems. IEEE Transactions on Signal Processing, vol.49, no.3, pp.613-624, 2001.
    [4]
    A. Bemporad, M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, vol.35, pp.407-428, 1999.
    [5]
    A. Bemporad, G. Ferrari-Trecate, M. Morari. Observability and controllability of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control, vol.45, no.10, pp.1864-1876, 2000.
    [6]
    B. De Schutter, T. J. J. Van den Boom. On Model Predictive Control for Max-min-plus-scaling Discrete Event Systems, Technical Report bds 00-04: Control Systems Engineering, Faculty of Information Technology and Systems, Delft University of Technology, The Netherlands, 2000.
    [7]
    A. van der Schaft, J. M. Schumacher. Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control, vol.43, no.4, pp.483-490, 1998.
    [8]
    B. De Schutter. Optimal control of a class of linear hybrid systems with saturation. In Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, Phoenix, AZ, vol.4, USA, pp.3978-3983, 1999.
    [9]
    W. P. M. H. Heemels, B. De Schutter, A. Bemporad. On the equivalence of classes of hybrid dynamical models. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, Orlando, FL, USA, vol.1, pp.364-369, 2001.
    [10]
    L. Bako, K. Boukharouba, S. Lecoeuche. Recovering piecewise affine maps by sparse optimization. In Proceedings of IFAC Conference on System Identification, IFAC, Brussels, Belgium, vol.16, no.1, pp.356-361, 2012.
    [11]
    L. Bako. Identification of switched linear systems via sparse optimization. Automatica, vol.47, no.4, pp.668-677, 2011.
    [12]
    G. Ferrari-Trecate, M. Muselli, D. Liberati, M. Morari. A clustering technique for the identification of piecewise affine systems. Automatica, vol.39, no.2, pp.205-217, 2003.
    [13]
    A. L. Juloski, W. P. M. H. Heemels, G. Ferrari-Trecate, R. Vidal, S. Paoletti, J. H. G. Niessen. Comparison of four procedures for the identification of hybrid systems. In Proceedings of the 8th International Conference on Hybrid Systems: Computation and Control, Springer-Verlag, Berlin Heidelberg, pp.354-369, 2005.
    [14]
    Y. Tian, T. Floquet, L. Belkoura, W. Perruquetti. Algebraic switching time identification for a class of linear hybrid systems. Nonlinear Analysis: Hybrid Systems, vol.5, no.2, pp.233-241, 2011.
    [15]
    A. Juloski, S. Weiland, W. P. M. H. Heemels. A bayesian approach to identification of hybrid systems. IEEE Transactions on Automatic Control, vol.50, no.10, pp.1520-533, 2005.
    [16]
    A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A bounded-error approach to piecewise affine system identification. IEEE Transactions on Automatic Control, vol.50, no.10, pp.1567-1580, 2005.
    [17]
    G. Ferrari-Trecate, F. Cuzzola, D. Mignone, M. Morari. Analysis of discrete-time piecewise affine and hybrid systems. Automatica, vol.38, no.12, pp.2139-2146, 2002.
    [18]
    G. Ferrari-Trecate, M. Muselli. Single-linkage clustering for optimal classification in piecewise affine regression. In Proceedings of IFAC Conference on Analysis and Design of Hybrid Systems, IFAC, pp.33-38, 2003.
    [19]
    H. Nakada, K. Takaba, T. Katayama. Identification of piecewise affine systems based on statistical clustering technique. Automatica, vol.41, no.5, pp.905-913, 2005.
    [20]
    K. Boukharouba. Modéisation et Classification de Comportements Dynamiques Des Systémes Hybrides, Ph.D. dissertation, Université de Lille, France, 2011. (in French)
    [21]
    K. Boukharouba, L. Bako, S. Lecoeuche. Identification of piecewise affine systems based on dempster-shafer theory. In Proceedings of IFAC Conference on System Identification, IFAC, Saint-Malo, France, vol.15, no.1, pp.1662-1667, 2009.
    [22]
    J. Sander, M. Ester, H. P. Kriegel, X. W. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, Springer, vol.2, no.2, pp.169-194, 1998.
    [23]
    Chaudhari Chaitali G. Optimizing clustering technique based on partitioning DBSCAN and ant clustering algorithm. International Journal of Engineering and Advanced Technology (IJEAT), vol.2, no.2, pp.212-215, 2012.
    [24]
    S. Ingo, C. Andreas. Support Vector Machines, Berlin, Germany: Springer, 2008.
    [25]
    R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification and Scene Analysis, New York: Wiley.
    [26]
    C. Hsu, C. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, vol.13, no.2, pp.415-425, 2002.
    [27]
    J. Weston, C. Watkins. Support vector machines for multi-class pattern recognition. In Proceedings of the 7th European Symposium on Artificial Neural Networks, IEEE, Bruges, Belgium, vol.4, pp.219-224, 1999.
    [28]
    M. T. Elbatta, R. M. Bolbol, W. M. Ashour. A vibration method for discovering density varied clusters. ISRN Artificial Intelligence, vol.2012, Article ID 723516, 2011.
    [29]
    J. Erman, M. Arlitt, A. Mahanti. Traffic classification using clustering algorithms. In Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data, ACM, New York, NY, USA, pp.281-286, 2006.
    [30]
    A. L. Juloski, S. Paoletti, J. Roll. Recent techniques for the identification of piecewise affine and hybrid systems. Current Trends in Nonlinear Systems and Control, Birkhäuser Boston: Springer, pp.79-99, 2006.
    [31]
    F. M'sahli, R. Abdennour, M. Ksouri. Experimental nonlinear model based predictive control for a class of semi-batch chemical reactors. International Journal of Advanced Manufacturing Technology, vol.20, no.6, pp.459-463, 2002.
    [32]
    S. Talmoudi, K. Abderrahim, R. B. Abdennour, M. Ksouri. Multimodel approach using neural networks for complex systems modeling and identification. Nonlinear Dynamics and Systems Theory, vol.8, no.3, pp.299-316, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (6184) PDF downloads(1984) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return