Citation: | Yi-Min Deng, Si-Yuan Wang. Biological Eagle-eye Inspired Target Detection for Unmanned Aerial Vehicles Equipped with a Manipulator. Machine Intelligence Research, vol. 20, no. 5, pp.741-752, 2023. https://doi.org/10.1007/s11633-022-1342-3 |
[1] |
W. R. T. Roderick, M. R. Cutkosky, D. Lentink. Bird-inspired dynamic grasping and perching in arboreal environments. Science Robotics, vol. 6, no. 61, Article number eabj7562, 2021. DOI: 10.1126/scirobotics.abj7562.
|
[2] |
D. Alshamaa, A. Cherubini, R. Passama, S. Pla, L. Damm, S. Ramdani. RobCap: A mobile motion capture system mounted on a robotic arm. IEEE Sensors Journal, vol. 22, no. 1, pp. 917–925, 2022. DOI: 10.1109/JSEN.2021.3128386.
|
[3] |
D. Morrison, P. Corke, J. Leitner. Learning robust, real-time, reactive robotic grasping. The International Journal of Robotics Research, vol. 39, no. 2–3, pp. 183–201, 2020. DOI: 10.1177/0278364919859066.
|
[4] |
J. Thomas, G. Loianno, K. Sreenath, V. Kumar. Toward image based visual servoing for aerial grasping and perching. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 2113–2118, 2014. DOI: 10.1109/ICRA.2014.6907149.
|
[5] |
J. González-Martín-Moro, J. L. Hernández-Verdejo, A. Clement-Corral. The visual system of diurnal raptors: Updated review. Archivos de la Sociedad Española de Oftalmología, vol. 92, no. 5, pp. 225–232, 2017. DOI: 10.1016/j.oftal.2016.11.019.
|
[6] |
L. Reymond. Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vision Research, vol. 25, no. 10, pp. 1477–1491, 1985. DOI: 10.1016/0042-6989(85)90226-3.
|
[7] |
Y. M. Deng, H. B. Duan. Biological eagle-eye-based visual platform for target detection. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 6, pp. 3125–3136, 2018. DOI: 10.1109/TAES.2018.2845178.
|
[8] |
Q. Fu, S. T. Wang, J. Wang, S. N. Liu, Y. B. Sun. A lightweight eagle-eye-based vision system for target detection and recognition. IEEE Sensors Journal, vol. 21, no. 22, pp. 26140–26148, 2021. DOI: 10.1109/JSEN.2021.3120922.
|
[9] |
M. M. Cheng, J. Warrell, W. Y. Lin, S. Zheng, V. Vineet, N. Crook. Efficient salient region detection with soft image abstraction. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Sydney, Australia, pp. 1529–1536, 2013. DOI: 10.1109/ICCV.2013.193.
|
[10] |
F. Bonnin-Pascual, A. Ortiz. A flying tool for sensing vessel structure defects using image contrast-based saliency. IEEE Sensors Journal, vol. 16, no. 15, pp. 6114–6121, 2016. DOI: 10.1109/JSEN.2016.2578360.
|
[11] |
Y. Zhang. Detection and tracking of human motion targets in video images based on Camshift algorithms. IEEE Sensors Journal, vol. 20, no. 20, pp. 11887–11893, 2020. DOI: 10.1109/JSEN.2019.2956051.
|
[12] |
X. C. Cao, Z. Q. Tao, B. Zhang, H. Z. Fu, W. Feng. Self-adaptively weighted co-saliency detection via rank constraint. IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 4175–4186, 2014. DOI: 10.1109/TIP.2014.2332399.
|
[13] |
M. Chancán, L. Hernandez-Nunez, A. Narendra, A. B. Barron, M. Milford. A hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 993–1000, 2020. DOI: 10.1109/LRA.2020.2967324.
|
[14] |
Y. H. Luo, M. Xu, C. H. Yuan, X. Cao, L. Q. Zhang, Y. Xu, T. J. Wang, Q. Feng. SiamSNN: Siamese spiking neural networks for energy-efficient object tracking. In Proceedings of the 30th International Conference on Artificial Neural Networks and Machine Learning, Springer, Bratislava, Slovakia, pp. 182–194, 2021. DOI: 10.1007/978-3-030-86383-8_15.
|
[15] |
Z. Y. Yang, Y. J. Wu, G. R. Wang, Y. K. Yang, G. Q. Li, L. Deng, J. Zhu, L. P. Shi. DashNet: A hybrid artificial and spiking neural network for high-speed object tracking, [Online], Available: https://arxiv.org/abs/1909.12942, 2019.
|
[16] |
H. B. Duan, L. Xin, Y. Xu, G. Z. Zhao, S. J. Chen. Eagle-vision-inspired visual measurement algorithm for UAV′s autonomous landing. International Journal of Robotics and Automation, vol. 35, no. 6, pp. 94–100, 2020. DOI: 10.2316/J.2020.206-0221.
|
[17] |
H. B. Duan, X. B. Xu, Y. M. Deng, Z. G. Zeng. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism. IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 5, pp. 3368–3382, 2021. DOI: 10.1109/TAES.2021.3075524.
|
[18] |
X. Li, H. B. Duan, J. C. Li, Y. M. Deng, F. Y. Wang. Biological eagle eye-based method for change detection in water scenes. Pattern Recognition, vol. 122, Article number 108203, 2022. DOI: 10.1016/J.PATCOG.2021.108203.
|
[19] |
H. Z. Fu, X. C. Cao, Z. W. Tu. Cluster-based co-saliency detection. IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 3766–3778, 2013. DOI: 10.1109/TIP.2013.2260166.
|
[20] |
S. Ohayon, W. Harmening, H. Wagner, E. Rivlin. Through a barn owl′s eyes: Interactions between scene content and visual attention. Biological Cybernetics, vol. 98, no. 2, pp. 115–132, 2008. DOI: 10.1007/s00422-007-0199-4.
|
[21] |
J. Orlowski, O. Ben-Shahar, H. Wagner. Visual search in barn owls: Task difficulty and saccadic behavior. Journal of Vision, vol. 18, no. 1, Article number 4, 2018. DOI: 10.1167/18.1.4.
|
[22] |
C. A. Goddard, S. P. Mysore, A. S. Bryant, J. R. Huguenard, E. I. Knudsen. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain. PLoS One, vol. 9, no. 1, Article number e85865, 2014. DOI: 10.1371/journal.pone.0085865.
|
[23] |
S. P. Mysore, E. I. Knudsen. Reciprocal inhibition of inhibition: A circuit motif for flexible categorization in stimulus selection. Neuron, vol. 73, no. 1, pp. 193–205, 2012. DOI: 10.1016/j.neuron.2011.10.037.
|
[24] |
W. Kim, C. Kim. Spatiotemporal saliency detection using textural contrast and its applications. IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 646–659, 2014. DOI: 10.1109/TCSVT.2013.2290579.
|
[25] |
S. Potier, M. Mitkus, A. Kelber. High resolution of colour vision, but low contrast sensitivity in a diurnal raptor. Proceedings of the Royal Society B-Biological Sciences, vol. 285, no. 1885, Article number 20181036, 2018. DOI: 10.1098/rspb.2018.1036.
|
[26] |
V. A. Tucker. The deep fovea, sideways vision and spiral flight paths in raptors. Journal of Experimental Biology, vol. 203, no. 24, pp. 3745–3754, 2000. DOI: 10.1242/jeb.203.24.3745.
|
[27] |
P. Cornic, C. Illoul, A. Cheminet, G. Le Besnerais, F. Champagnat, Y. Le Sant, B. Leclaire. Another look at volume self-calibration: Calibration and self-calibration within a pinhole model of Scheimpflug cameras. Measurement Science and Technology, vol. 27, no. 9, Article number 094004, 2016. DOI: 10.1088/0957-0233/27/9/094004.
|
[28] |
K. Gao, H. Aliakbarpour, J. Fraser, K. Nouduri, F. Bunyak, R. Massaro, G. Seetharaman, K. Palaniappan. Local feature performance evaluation for structure-from-motion and multi-view stereo using simulated city-scale aerial imagery. IEEE Sensors Journal, vol. 21, no. 10, pp. 11615–11627, 2021. DOI: 10.1109/JSEN.2020.3042810.
|
[29] |
C. Liu, Y. Huang, Y. M. Rong, G. Li, J. Meng, Y. L. Xie, X. L. Zhang. A novel extrinsic calibration method of mobile manipulator camera and 2D-LiDAR via arbitrary trihedron-based reconstruction. IEEE Sensors Journal, vol. 21, no. 21, pp. 24672–24682, 2021. DOI: 10.1109/JSEN.2021.3111196.
|
[30] |
S. Q. Li, C. Xu, M. Xie. A robust O(n) solution to the perspective-n-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1444–1450, 2012. DOI: 10.1109/TPAMI.2012.41.
|
[31] |
R. Achanta, S. Süsstrunk. Saliency detection using maximum symmetric surround. In Proceedings of IEEE International Conference on Image Processing, IEEE, Hong Kong, China, pp. 2653–2656, 2010. DOI: 10.1109/ICIP.2010.5652636.
|
[32] |
E. Erdem, A. Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, vol. 13, no. 4, Article number 11, 2013. DOI: 10.1167/13.4.11.
|
[33] |
H. B. Duan, Y. M. Deng, X. H. Wang, F. Liu. Biological eagle-eye-based visual imaging guidance simulation platform for unmanned flying vehicles. IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 12, pp. 36–45, 2013. DOI: 10.1109/MAES.2013.6693667.
|
[34] |
X. D. Hou, L. Q. Zhang. Saliency detection: A spectral residual approach. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Minneapolis, USA, 2007. DOI: 10.1109/CVPR.2007.383267.
|
[35] |
W. G. Wang, J. B. Shen, R. G. Yang, F. Porikli. Saliency-aware video object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 1, pp. 20–33, 2018. DOI: 10.1109/TPAMI.2017.2662005.
|
[36] |
W. J. Zhu, S. Liang, Y. C. Wei, J. Sun. Saliency optimization from robust background detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 2814–2821, 2014. DOI: 10.1109/CVPR.2014.360.
|
[37] |
F. Perazzi, P. Krähenbühl, Y. Pritch, A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, USA, pp. 733–740, 2012. DOI: 10.1109/CVPR.2012.6247743.
|
[38] |
Y. C. Wei, F. Wen, W. J. Zhu, J. Sun. Geodesic saliency using background priors. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 29–42, 2012. DOI: 10.1007/978-3-642-33712-3_3.
|
[39] |
C. Yang, L. H. Zhang, H. C. Lu, X. Ruan, M. H. Yang. Saliency detection via graph-based manifold ranking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Portland, USA, pp. 3166–3173, 2013. DOI: 10.1109/CVPR.2013.407.
|
[40] |
Y. L. Chen, C. T. Hsu. Implicit rank-sparsity decomposition: Applications to saliency/co-saliency detection. In Proceedings of the 22nd International Conference on Pattern Recognition, IEEE, Stockholm, Sweden, pp. 2305–2310, 2014. DOI: 10.1109/ICPR.2014.400.
|
[41] |
F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 724–732, 2016. DOI: 10.1109/CVPR.2016.85.
|
[42] |
P. Ochs, J. Malik, T. Brox. Segmentation of moving objects by long term video analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1187–1200, 2014. DOI: 10.1109/TPAMI.2013.242.
|
[43] |
A. Borji, L. Itti. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 185–207, 2013. DOI: 10.1109/TPAMI.2012.89.
|
[44] |
R. Achanta, S. Hemami, F. Estrada, S. Susstrunk. Frequency-tuned Salient Region Detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 1597–1604, 2009. DOI: 10.1109/CVPR.2009.5206596.
|