Yi-Min Deng, Si-Yuan Wang. Biological Eagle-eye Inspired Target Detection for Unmanned Aerial Vehicles Equipped with a Manipulator. Machine Intelligence Research, vol. 20, no. 5, pp.741-752, 2023. https://doi.org/10.1007/s11633-022-1342-3
Citation: Yi-Min Deng, Si-Yuan Wang. Biological Eagle-eye Inspired Target Detection for Unmanned Aerial Vehicles Equipped with a Manipulator. Machine Intelligence Research, vol. 20, no. 5, pp.741-752, 2023. https://doi.org/10.1007/s11633-022-1342-3

Biological Eagle-eye Inspired Target Detection for Unmanned Aerial Vehicles Equipped with a Manipulator

doi: 10.1007/s11633-022-1342-3
More Information
  • Author Bio:

    Yi-Min Deng received the B. Sc. and Ph. D. degrees in control science and engineering from School of Automation Science and Electrical Engineering, Beihang University, China in 2011 and 2017, respectively. He is currently an associate professor at School of Automation Science and Electrical Engineering, Beihang University, China. He is enrolled in the Young Elite Scientists Sponsorship Program by CAST (Chinese Association for Science and Technology) and Young Top Talent Support Program by Beihang University. His research interests include biological computer vision and autonomous flight control. E-mail: ymdeng@buaa.edu.cn (Corresponding author)ORCID iD: 0000-0003-1533-3839

    Si-Yuan Wang received the B. Sc. degree in automation from School of Automation and Electrical Engineering, University of Science and Technology Beijing, China in 2019. She is currently a master student in guidance, navigation and control at School of Automation Science and Electrical Engineering, Beihang University, China. Her research interests include bioinspired computation and artificial intelligence. E-mail: wang_siyuan@buaa.edu.cn

  • Received Date: 2022-01-17
  • Accepted Date: 2022-05-30
  • Publish Online: 2023-03-07
  • Publish Date: 2023-10-01
  • Inspired by eagle eye mechanisms, the structure and information processing characteristics of the eagle′s visual system are used for the target capture task of an unmanned aerial vehicle (UAV) with a mechanical arm. In this paper, a novel eagle-eye inspired multi-camera sensor and a saliency detection method are proposed. A combined camera system is built by simulating the double fovea structure on the eagle retina. A saliency target detection method based on the eagle midbrain inhibition mechanism is proposed by measuring the static saliency information and dynamic features. Thus, salient targets can be accurately detected through the collaborative work between different cameras of the proposed multi-camera sensor. Experimental results show that the eagle-eye inspired visual system is able to continuously detect targets in outdoor scenes and that the proposed algorithm has a strong inhibitory effect on moving background interference.

     

  • loading
  • [1]
    W. R. T. Roderick, M. R. Cutkosky, D. Lentink. Bird-inspired dynamic grasping and perching in arboreal environments. Science Robotics, vol. 6, no. 61, Article number eabj7562, 2021. DOI: 10.1126/scirobotics.abj7562.
    [2]
    D. Alshamaa, A. Cherubini, R. Passama, S. Pla, L. Damm, S. Ramdani. RobCap: A mobile motion capture system mounted on a robotic arm. IEEE Sensors Journal, vol. 22, no. 1, pp. 917–925, 2022. DOI: 10.1109/JSEN.2021.3128386.
    [3]
    D. Morrison, P. Corke, J. Leitner. Learning robust, real-time, reactive robotic grasping. The International Journal of Robotics Research, vol. 39, no. 2–3, pp. 183–201, 2020. DOI: 10.1177/0278364919859066.
    [4]
    J. Thomas, G. Loianno, K. Sreenath, V. Kumar. Toward image based visual servoing for aerial grasping and perching. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 2113–2118, 2014. DOI: 10.1109/ICRA.2014.6907149.
    [5]
    J. González-Martín-Moro, J. L. Hernández-Verdejo, A. Clement-Corral. The visual system of diurnal raptors: Updated review. Archivos de la Sociedad Española de Oftalmología, vol. 92, no. 5, pp. 225–232, 2017. DOI: 10.1016/j.oftal.2016.11.019.
    [6]
    L. Reymond. Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vision Research, vol. 25, no. 10, pp. 1477–1491, 1985. DOI: 10.1016/0042-6989(85)90226-3.
    [7]
    Y. M. Deng, H. B. Duan. Biological eagle-eye-based visual platform for target detection. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 6, pp. 3125–3136, 2018. DOI: 10.1109/TAES.2018.2845178.
    [8]
    Q. Fu, S. T. Wang, J. Wang, S. N. Liu, Y. B. Sun. A lightweight eagle-eye-based vision system for target detection and recognition. IEEE Sensors Journal, vol. 21, no. 22, pp. 26140–26148, 2021. DOI: 10.1109/JSEN.2021.3120922.
    [9]
    M. M. Cheng, J. Warrell, W. Y. Lin, S. Zheng, V. Vineet, N. Crook. Efficient salient region detection with soft image abstraction. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Sydney, Australia, pp. 1529–1536, 2013. DOI: 10.1109/ICCV.2013.193.
    [10]
    F. Bonnin-Pascual, A. Ortiz. A flying tool for sensing vessel structure defects using image contrast-based saliency. IEEE Sensors Journal, vol. 16, no. 15, pp. 6114–6121, 2016. DOI: 10.1109/JSEN.2016.2578360.
    [11]
    Y. Zhang. Detection and tracking of human motion targets in video images based on Camshift algorithms. IEEE Sensors Journal, vol. 20, no. 20, pp. 11887–11893, 2020. DOI: 10.1109/JSEN.2019.2956051.
    [12]
    X. C. Cao, Z. Q. Tao, B. Zhang, H. Z. Fu, W. Feng. Self-adaptively weighted co-saliency detection via rank constraint. IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 4175–4186, 2014. DOI: 10.1109/TIP.2014.2332399.
    [13]
    M. Chancán, L. Hernandez-Nunez, A. Narendra, A. B. Barron, M. Milford. A hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 993–1000, 2020. DOI: 10.1109/LRA.2020.2967324.
    [14]
    Y. H. Luo, M. Xu, C. H. Yuan, X. Cao, L. Q. Zhang, Y. Xu, T. J. Wang, Q. Feng. SiamSNN: Siamese spiking neural networks for energy-efficient object tracking. In Proceedings of the 30th International Conference on Artificial Neural Networks and Machine Learning, Springer, Bratislava, Slovakia, pp. 182–194, 2021. DOI: 10.1007/978-3-030-86383-8_15.
    [15]
    Z. Y. Yang, Y. J. Wu, G. R. Wang, Y. K. Yang, G. Q. Li, L. Deng, J. Zhu, L. P. Shi. DashNet: A hybrid artificial and spiking neural network for high-speed object tracking, [Online], Available: https://arxiv.org/abs/1909.12942, 2019.
    [16]
    H. B. Duan, L. Xin, Y. Xu, G. Z. Zhao, S. J. Chen. Eagle-vision-inspired visual measurement algorithm for UAV′s autonomous landing. International Journal of Robotics and Automation, vol. 35, no. 6, pp. 94–100, 2020. DOI: 10.2316/J.2020.206-0221.
    [17]
    H. B. Duan, X. B. Xu, Y. M. Deng, Z. G. Zeng. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism. IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 5, pp. 3368–3382, 2021. DOI: 10.1109/TAES.2021.3075524.
    [18]
    X. Li, H. B. Duan, J. C. Li, Y. M. Deng, F. Y. Wang. Biological eagle eye-based method for change detection in water scenes. Pattern Recognition, vol. 122, Article number 108203, 2022. DOI: 10.1016/J.PATCOG.2021.108203.
    [19]
    H. Z. Fu, X. C. Cao, Z. W. Tu. Cluster-based co-saliency detection. IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 3766–3778, 2013. DOI: 10.1109/TIP.2013.2260166.
    [20]
    S. Ohayon, W. Harmening, H. Wagner, E. Rivlin. Through a barn owl′s eyes: Interactions between scene content and visual attention. Biological Cybernetics, vol. 98, no. 2, pp. 115–132, 2008. DOI: 10.1007/s00422-007-0199-4.
    [21]
    J. Orlowski, O. Ben-Shahar, H. Wagner. Visual search in barn owls: Task difficulty and saccadic behavior. Journal of Vision, vol. 18, no. 1, Article number 4, 2018. DOI: 10.1167/18.1.4.
    [22]
    C. A. Goddard, S. P. Mysore, A. S. Bryant, J. R. Huguenard, E. I. Knudsen. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain. PLoS One, vol. 9, no. 1, Article number e85865, 2014. DOI: 10.1371/journal.pone.0085865.
    [23]
    S. P. Mysore, E. I. Knudsen. Reciprocal inhibition of inhibition: A circuit motif for flexible categorization in stimulus selection. Neuron, vol. 73, no. 1, pp. 193–205, 2012. DOI: 10.1016/j.neuron.2011.10.037.
    [24]
    W. Kim, C. Kim. Spatiotemporal saliency detection using textural contrast and its applications. IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 646–659, 2014. DOI: 10.1109/TCSVT.2013.2290579.
    [25]
    S. Potier, M. Mitkus, A. Kelber. High resolution of colour vision, but low contrast sensitivity in a diurnal raptor. Proceedings of the Royal Society B-Biological Sciences, vol. 285, no. 1885, Article number 20181036, 2018. DOI: 10.1098/rspb.2018.1036.
    [26]
    V. A. Tucker. The deep fovea, sideways vision and spiral flight paths in raptors. Journal of Experimental Biology, vol. 203, no. 24, pp. 3745–3754, 2000. DOI: 10.1242/jeb.203.24.3745.
    [27]
    P. Cornic, C. Illoul, A. Cheminet, G. Le Besnerais, F. Champagnat, Y. Le Sant, B. Leclaire. Another look at volume self-calibration: Calibration and self-calibration within a pinhole model of Scheimpflug cameras. Measurement Science and Technology, vol. 27, no. 9, Article number 094004, 2016. DOI: 10.1088/0957-0233/27/9/094004.
    [28]
    K. Gao, H. Aliakbarpour, J. Fraser, K. Nouduri, F. Bunyak, R. Massaro, G. Seetharaman, K. Palaniappan. Local feature performance evaluation for structure-from-motion and multi-view stereo using simulated city-scale aerial imagery. IEEE Sensors Journal, vol. 21, no. 10, pp. 11615–11627, 2021. DOI: 10.1109/JSEN.2020.3042810.
    [29]
    C. Liu, Y. Huang, Y. M. Rong, G. Li, J. Meng, Y. L. Xie, X. L. Zhang. A novel extrinsic calibration method of mobile manipulator camera and 2D-LiDAR via arbitrary trihedron-based reconstruction. IEEE Sensors Journal, vol. 21, no. 21, pp. 24672–24682, 2021. DOI: 10.1109/JSEN.2021.3111196.
    [30]
    S. Q. Li, C. Xu, M. Xie. A robust O(n) solution to the perspective-n-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1444–1450, 2012. DOI: 10.1109/TPAMI.2012.41.
    [31]
    R. Achanta, S. Süsstrunk. Saliency detection using maximum symmetric surround. In Proceedings of IEEE International Conference on Image Processing, IEEE, Hong Kong, China, pp. 2653–2656, 2010. DOI: 10.1109/ICIP.2010.5652636.
    [32]
    E. Erdem, A. Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, vol. 13, no. 4, Article number 11, 2013. DOI: 10.1167/13.4.11.
    [33]
    H. B. Duan, Y. M. Deng, X. H. Wang, F. Liu. Biological eagle-eye-based visual imaging guidance simulation platform for unmanned flying vehicles. IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 12, pp. 36–45, 2013. DOI: 10.1109/MAES.2013.6693667.
    [34]
    X. D. Hou, L. Q. Zhang. Saliency detection: A spectral residual approach. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Minneapolis, USA, 2007. DOI: 10.1109/CVPR.2007.383267.
    [35]
    W. G. Wang, J. B. Shen, R. G. Yang, F. Porikli. Saliency-aware video object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 1, pp. 20–33, 2018. DOI: 10.1109/TPAMI.2017.2662005.
    [36]
    W. J. Zhu, S. Liang, Y. C. Wei, J. Sun. Saliency optimization from robust background detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 2814–2821, 2014. DOI: 10.1109/CVPR.2014.360.
    [37]
    F. Perazzi, P. Krähenbühl, Y. Pritch, A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, USA, pp. 733–740, 2012. DOI: 10.1109/CVPR.2012.6247743.
    [38]
    Y. C. Wei, F. Wen, W. J. Zhu, J. Sun. Geodesic saliency using background priors. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 29–42, 2012. DOI: 10.1007/978-3-642-33712-3_3.
    [39]
    C. Yang, L. H. Zhang, H. C. Lu, X. Ruan, M. H. Yang. Saliency detection via graph-based manifold ranking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Portland, USA, pp. 3166–3173, 2013. DOI: 10.1109/CVPR.2013.407.
    [40]
    Y. L. Chen, C. T. Hsu. Implicit rank-sparsity decomposition: Applications to saliency/co-saliency detection. In Proceedings of the 22nd International Conference on Pattern Recognition, IEEE, Stockholm, Sweden, pp. 2305–2310, 2014. DOI: 10.1109/ICPR.2014.400.
    [41]
    F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 724–732, 2016. DOI: 10.1109/CVPR.2016.85.
    [42]
    P. Ochs, J. Malik, T. Brox. Segmentation of moving objects by long term video analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1187–1200, 2014. DOI: 10.1109/TPAMI.2013.242.
    [43]
    A. Borji, L. Itti. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 185–207, 2013. DOI: 10.1109/TPAMI.2012.89.
    [44]
    R. Achanta, S. Hemami, F. Estrada, S. Susstrunk. Frequency-tuned Salient Region Detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 1597–1604, 2009. DOI: 10.1109/CVPR.2009.5206596.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (500) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return