Citation: | Ling-Yi Xu, Zoran Gajic. Improved Network for Face Recognition Based on Feature Super Resolution Method. International Journal of Automation and Computing, vol. 18, no. 6, pp.915-925, 2021. https://doi.org/10.1007/s11633-021-1309-9 |
[1] |
Y. Y. Zheng, J. Yao. Multi-angle face detection based on DP-Adaboost. International Journal of Automation and Computing, vol. 12, no. 4, pp. 421–431, 2015. DOI: 10.1007/s11633-014-0872-8.
|
[2] |
L. Wang, R. F. Li, K. Wang, J. Chen. Feature representation for facial expression recognition based on FACS and LBP. International Journal of Automation and Computing, vol. 11, no. 5, pp. 459–468, 2014. DOI: 10.1007/s11633-014-0835-0.
|
[3] |
H. S. Du, Q. P. Hu, D. F. Qiao, I. Pitas. Robust face recognition via low-rank sparse representation-based classification. International Journal of Automation and Computing, vol. 12, no. 6, pp. 579–587, 2015. DOI: 10.1007/s11633-015-0901-2.
|
[4] |
I. Masi, Y. Wu, T. Hassner, P. Natarajan. Deep face recognition: A survey. In Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images, IEEE, Parana, Brazil, pp. 471−478, 2018.
|
[5] |
B. Prihasto, S. Choirunnisa, M. I. Nurdiansyah, S. Mathulaprangsan, V. C. M. Chu, S. H. Chen, J. C. Wang. A survey of deep face recognition in the wild. In Proceedings of International Conference on Orange Technologies, IEEE, Melbourne, Australia, pp. 76−79, 2016.
|
[6] |
W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld. Face recognition: A literature survey. ACM Computing Surveys, vol. 35, no. 4, pp. 399–458, 2003. DOI: 10.1145/954339.954342.
|
[7] |
X. Z. Zhang, Y. S. Gao. Face recognition across pose: A review. Pattern Recognition, vol. 42, no. 11, pp. 2876–2896, 2009. DOI: 10.1016/j.patcog.2009.04.017.
|
[8] |
C. H. Lin, Z. H. Wang, G. J. Jong. A de-identification face recognition using extracted thermal features based on deep learning. IEEE Sensors Journal, vol. 20, no. 16, pp. 9510–9517, 2020. DOI: 10.1109/JSEN.2020.2986098.
|
[9] |
W. Yang, H. W. Gao, Y. Q. Jiang, J. H. Yu, J. Sun, J. G. Liu, Z. J. Ju. A cascaded feature pyramid network with non-backward propagation for facial expression recognition. IEEE Sensors Journal, vol. 21, no. 10, pp. 11382–11392, 2021. DOI: 10.1109/JSEN.2020.2997182.
|
[10] |
Y. Taigman, M. Yang, M. A. Ranzato, L. Wolf. DeepFace: Closing the gap to human-level performance in face verification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 1701−1708, 2014.
|
[11] |
F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 815−823, 2015.
|
[12] |
O. M. Parkhi, A. Vedaldi, A. Zisserman. Deep face recognition. In Proceedings of the British Machine Vision Conference, Swansea, UK, 2015.
|
[13] |
J. K. Deng, J. Guo, N. N. Xue, S. Zafeiriou. ArcFace: Additive angular margin loss for deep face recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4685−4694, 2019.
|
[14] |
G. B. Huang, M. Ramesh, T. Berg, E. Learned-Miller. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, Technical Report, Technical Report 07−49, University of Massachusetts, Amherst, USA, 2007.
|
[15] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 770−778, 2016.
|
[16] |
Y. Taigman, M. Yang, M. A. Ranzato, L. Wolf. Web-scale training for face identification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 2746−2754, 2015.
|
[17] |
Q. Cao, L. Shen, W. D. Xie, O. M. Parkhi, A. Zisserman. VGGFace2: A dataset for recognising faces across pose and age. In Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition, IEEE, Xi′an, China, 2018.
|
[18] |
Y. D. Guo, L. Zhang, Y. X. Hu, X. D. He, J. F. Gao. MS-Celeb-1M: A dataset and benchmark for large-scale face recognition. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, Netherlands, pp. 87−102, 2016.
|
[19] |
D. Yi, Z. Lei, S. C. Liao, S. Z. Li. Learning face representation from scratch. [Online], Available: https://arxiv.org/abs/1411.7923, 2014.
|
[20] |
Y. M. Lui, D. Bolme, B. A. Draper, J. R. Beveridge, G. Givens, P. J. Phillips. A meta-analysis of face recognition covariates. In Proceedings of the 3rd International Conference on Biometrics: Theory, Applications, and Systems, IEEE, Washington, USA, 2009.
|
[21] |
W. W. Zou, P. C. Yuen. Very low resolution face recognition problem. IEEE Transactions on Image Processing, vol. 21, no. 1, pp. 327–340, 2012. DOI: 10.1109/TIP.2011.2162423.
|
[22] |
J. D. van Ouwerkerk. Image super-resolution survey. Image and Vision Computing, vol. 24, no. 10, pp. 1039–1052, 2006. DOI: 10.1016/j.imavis.2006.02.026.
|
[23] |
J. Y. Wu, S. Y. Ding, W. Xu, H. Y. Chao. Deep joint face hallucination and recognition. [Online], Available: https://arxiv.org/abs/1611.08091, 2016.
|
[24] |
Z. Lu, X. D. Jiang, A. Kot. Deep coupled ResNet for low-resolution face recognition. IEEE Signal Processing Letters, vol. 25, no. 4, pp. 526–530, 2018. DOI: 10.1109/LSP.2018.2810121.
|
[25] |
A. J. Shah, S. B. Gupta. Image super resolution-A survey. In Proceedings of the 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, IEEE, Surat, India, 2012.
|
[26] |
Z. Y. Cheng, X. T. Zhu, S. G. Gong. Low-resolution face recognition. [Online], Available: https://arxiv.org/abs/1811.08965, 2019.
|
[27] |
P. Li, L. Prieto, D. Mery, P. J. Flynn. On low-resolution face recognition in the wild: Comparisons and new techniques. IEEE Transactions on Information Forensics and Security, vol. 14, no. 8, pp. 2000–2012, 2019. DOI: 10.1109/TIFS.2018.2890812.
|
[28] |
L. S. Luevano, L. Chang, H. Méndez-Vázquez, Y. Martínez-Díaz, M. González-Mendoza. A study on the performance of unconstrained very low resolution face recognition: Analyzing current trends and new research directions. IEEE Access, vol. 9, pp. 75470–75493, 2021. DOI: 10.1109/ACCESS.2021.3080712.
|
[29] |
K. Grm, W. J. Scheirer, V. Štruc. Face hallucination using cascaded super-resolution and identity priors. IEEE Transactions on Image Processing, vol. 29, pp. 2150–2165, 2019. DOI: 10.1109/TIP.2019.2945835.
|
[30] |
K. Nguyen, C. Fookes, S. Sridharan, M. Tistarelli, M. Nixon. Super-resolution for biometrics: A comprehensive survey. Pattern Recognition, vol. 78, pp. 23–42, 2018. DOI: 10.1016/j.patcog.2018.01.002.
|
[31] |
S. Banerjee, S. Das. LR-GAN for degraded face recognition. Pattern Recognition Letters, vol. 116, pp. 246–253, 2018. DOI: 10.1016/j.patrec.2018.10.034.
|
[32] |
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A. A. Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018. DOI: 10.1109/MSP.2017.2765202.
|
[33] |
V. K. Ha, J. C. Ren, X. Y. Xu, S. Zhao, G. Xie, V. Masero, A. Hussain. Deep learning based single image super-resolution: A survey. International Journal of Automation and Computing, vol. 16, no. 4, pp. 413–426, 2019. DOI: 10.1007/s11633-019-1183-x.
|
[34] |
S. Z. Zhu, S. F. Liu, C. C. Loy, X. O. Tang. Deep cascaded bi-network for face hallucination. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 614−630, 2016.
|
[35] |
X. Yu, B. Fernando, R. Hartley, F. Porikli. Semantic face hallucination: Super-resolving very low-resolution face images with supplementary attributes. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 11, pp. 2926–2943, 2020. DOI: 10.1109/TPAMI.2019.2916881.
|
[36] |
E. Zangeneh, M. Rahmati, Y. Mohsenzadeh. Low resolution face recognition using a two-branch deep convolutional neural network architecture. Expert Systems with Applications, vol. 139, Article number 112854, 2020. DOI: 10.1016/j.eswa.2019.112854.
|
[37] |
W. M. Tan, B. Yan, B. Bare. Feature super-resolution: Make machine see more clearly. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3994−4002, 2018.
|
[38] |
F. Wang, L. R. Chen, C. Li, S. Y. Huang, Y. J. Chen, C. Qian, C. C. Loy. The devil of face recognition is in the noise. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 780−795, 2018.
|