Citation: | Lu-Jie Zhou, Jian-Wu Dang, Zhen-Hai Zhang. Fault Information Recognition for On-board Equipment of High-speed Railway Based on Multi-neural Network Collaboration. International Journal of Automation and Computing, vol. 18, no. 6, pp.935-946, 2021. https://doi.org/10.1007/s11633-021-1298-8 |
[1] |
J. Tekli. An overview on XML semantic disambiguation from unstructured text to semi-structured data: Background, applications, and ongoing challenges. IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1383–1407, 2016. DOI: 10.1109/TKDE.2016.2525768.
|
[2] |
X. F. Mu, W. Wang, A. P. Xu. Incorporating token-level dictionary feature into neural model for named entity recognition. Neurocomputing, vol. 375, pp. 43–50, 2020. DOI: 10.1016/j.neucom.2019.09.005.
|
[3] |
F. Li, M. S. Zhang, B. Tian, B. Chen, G. H. Fu, D. H. Ji. Recognizing irregular entities in biomedical text via deep neural networks. Pattern Recognition Letters, vol. 105, pp. 105–113, 2018. DOI: 10.1016/j.patrec.2017.06.009.
|
[4] |
X. Z. Yin, H. Zhao, J. B. Zhao, W. W. Yao, Z. L. Huang. Multi-neural network collaboration for Chinese military named entity recognition. Journal of Tsinghua University (Science and Technology)
|
[5] |
L. Luo, Z. H. Yang, P. Yang, Y. Zhang, L. Wang, H. F. Lin, J. Wang. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics, vol. 34, no. 8, pp. 1381–1388, 2018. DOI: 10.1093/bioinformatics/btx761.
|
[6] |
D. M. Li, Y. Zhang, D. Y. Li, D. Q. Lin. Review of entity relation extraction methods. Journal of Computer Research and Development, vol. 57, no. 7, pp. 1424–1448, 2020. DOI: 10.7544/issn1000-1239.2020.20190358. (in Chinese)
|
[7] |
R. Bharathi, R. Selvarani. Hidden Markov model approach for software reliability estimation with logic error. International Journal of Automation and Computing, vol. 17, no. 2, pp. 305–320, 2020. DOI: 10.1007/s11633-019-1214-7.
|
[8] |
Z. Chen, H. Ji. Language specific issue and feature exploration in Chinese event extraction. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, ACM, Boulder, USA, pp. 209−212, 2009. DOI: 10.3115/1620853.1620910.
|
[9] |
G. Luo, X. J. Huang, C. Y. Lin, Z. Q. Nie. Joint entity recognition and disambiguation. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 879−888, 2015.
|
[10] |
Z. H. Zheng, W. B. Wu, X. Chen, R. X. Hu, X. Liu, P. Wang. A Traffic sensing and analyzing system using social media data. Acta Automatica Sinica, vol. 44, no. 4, pp. 656–666, 2018. DOI: 10.16383/j.aas.2017.c160537. (in Chinese)
|
[11] |
R. F. He, S. Y. Duan. Joint Chinese event extraction based multi-task learning. Journal of Software, vol. 30, no. 4, pp. 1015–1030, 2019. DOI: 10.13328/j.cnki.jos.005380. (in Chinese)
|
[12] |
X. Z. Ma, F. Xia. Unsupervised dependency parsing with transferring distribution via parallel guidance and entropy regularization. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, USA, pp. 1337−1348, 2014.
|
[13] |
Y. M. Han, N. Ding, Z. Q. Geng, Z. Wang, C. Chu. An optimized long short-term memory network based fault diagnosis model for chemical processes. Journal of Process Control, vol. 92, pp. 161–168, 2020. DOI: 10.1016/j.jprocont.2020.06.005.
|
[14] |
X. Hu, Y. M. Han, B. Yu, Z. Q. Geng, J. Z. Fan. Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. Journal of Cleaner Production, vol. 278, Article number 123611, 2021. DOI: 10.1016/j.jclepro.2020.123611.
|
[15] |
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
|
[16] |
Z. H. Huang, W. Xu, K. Yu. Bidirectional LSTM-CRF models for sequence tagging, [Online], Available: https://arxiv.org/abs/1508.01991, Aug 9, 2015.
|
[17] |
J. P. C. Chiu, E. Nichols. Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, vol. 4, pp. 357–370, 2016. DOI: 10.1162/tacl_a_00104.
|
[18] |
Z. G. Liu, X. R. Chen. Research on relation extraction of named entity on social media in smart cities. Soft Computing, vol. 24, no. 15, pp. 11135–11147, 2020. DOI: 10.1007/s00500-020-04742-w.
|
[19] |
X. Y. Li, Y. X. Meng, X. F. Sun, Q. H. Han, A. Yuan, J. W. Li. Is word segmentation necessary for deep learning of Chinese representations? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, ACL, Florence, Italy, pp. 3242−3252, 2019. DOI: 10.18653/v1/P19-1314.
|
[20] |
Q. Zhao, D. Wang, S. S. Xu, X. T. Zhang, X. X. Wang. A weakly supervised Chinese medical named entity recognition method based on RNN. Journal of Harbin Engineering University, 2020. (in Chinese)
|
[21] |
L. Ratinov, D. Roth. Design challenges and misconceptions in named entity recognition. In Proceedings of the 13th Conference on Computational Natural Language Learning, ACM, Boulder, USA, pp. 147−155, 2009.
|
[22] |
J. Wang. M. Wang. P. P. Li, L. Q. Liu, Z. Q. Zhao, X. G. Hu, X. D. Wu. Online feature selection with group structure analysis. IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 11, pp. 3029–3041, 2015. DOI: 10.1109/TKDE.2015.2441716.
|
[23] |
H. Reddy, N. Raj, M. Gala, A. Basava. Text-mining-based fake news detection using ensemble methods. International Journal of Automation and Computing, vol. 17, no. 2, pp. 210–221, 2020. DOI: 10.1007/s11633-019-1216-5.
|
[24] |
Y. Bengio, H. Schwenk, J. S. Senécal, F. Morin, J. L. Gauvain. Neural probabilistic language models. Innovations in Machine Learning, D. E. Holmes, L. C. Jain, Ed., Berlin, Heidelberg: Springer, pp. 137−186, 2006. DOI: 10.1007/3-540-33486-6_6.
|
[25] |
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe USA, pp. 3111−3119, 2013.
|
[26] |
L. C. Li, Z. Y. Wu, M. X. Xu, H. Meng, L. H. Cai. Combining CNN and BLSTM to extract textual and acoustic features for recognizing stances in mandarin ideological debate competition. In Proceedings of the Interspeech 2016, San Francisco, USA, pp. 1392−1396, 2016.
|
[27] |
X. L. Tang, W. X. Lin, Y. M. Du, T. Wang. Short text feature extraction and classification based on serial-parallel convolutional gated recurrent neural network. Advanced Engineering Sciences, vol. 51, no. 4, pp. 125–132, 2019. DOI: 10.15961/j.jsuese.201801160. (in Chinese)
|
[28] |
Y. L. Jin, J. F. Xie, W. S. Guo, C. Luo, D. J. Wu, R. Wang. LSTM-CRF neural network with gated self attention for Chinese NER. IEEE Access, vol. 7, pp. 136694–136703, 2019. DOI: 10.1109/ACCESS.2019.2942433.
|
[29] |
Y. N. Dauphin, A. Fan, M. Auli, D. Grangier. Language modeling with gated convolutional networks, [Online], Available: https://arxiv.org/abs/1612.08083v3, 2017.
|
[30] |
X. Glorot, Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, vol. 9, pp. 249–256, 2010.
|
[31] |
R. Pascanu, T. Mikolov, Y. Bengio. On the difficulty of training Recurrent Neural Networks. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, USA, pp. 1310−1318, 2013.
|
[32] |
S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 10.1162/neco.1997.9.8.1735.
|