Citation: | Ravindra Munje, Wei-Dong Zhang. Observer-based Multirate Feedback Control Design for Two-time-scale System. International Journal of Automation and Computing, vol. 18, no. 6, pp.1007-1016, 2021. https://doi.org/10.1007/s11633-020-1268-6 |
[1] |
D. P. Glasson. Development and applications of multirate digital control [25 Years Ago]. IEEE Control Systems Magazine, vol. 28, no. 5, pp. 13–15, 2008. DOI: 10.1109/MCS.2008.927958.
|
[2] |
M. Araki, T. Hagiwara. Pole assignment by multirate sampled-data output feedback. International Journal of Control, vol. 44, no. 6, pp. 1661–1673, 1986. DOI: 10.1080/00207178608933692.
|
[3] |
A. B. Chammas, C. T. Leondes. Pole assignment by piecewise constant output feedback. International Journal of Control, vol. 29, no. 1, pp. 31–38, 1979. DOI: 10.1080/00207177908922677.
|
[4] |
T. Hagiwara, M. Araki. Design of a stable state feedback controller based on the multirate sampling of the plant output. IEEE Transactions on Automatic Control, vol. 33, no. 9, pp. 812–819, 1988. DOI: 10.1109/9.1309.
|
[5] |
Z. Li, S. R. Xue, X. H. Yu, H. J. Gao. Controller optimization for multirate systems based on reinforcement learning. International Journal of Automation and Computing, vol. 17, no. 3, pp. 417–427, 2020. DOI: 10.1007/s11633-020-1229-0.
|
[6] |
R. K. Munje, B. M. Patre. Fast output sampling controller for three time scale systems. In Proceedings of Indian Control Conference,IEEE,Hyderabad,India, pp. 456–460, 2016. DOI: 10.1109/INDIANCC.2016.7441174.
|
[7] |
R. K. Munje, B. M. Patre, A. P. Tiwari. Periodic output feedback for spatial control of AHWR: A three-time-scale approach. IEEE Transactions on Nuclear Science, vol. 61, no. 4, pp. 2373–2382, 2014. DOI: 10.1109/TNS.2014.2327691.
|
[8] |
A. P. Tiwari, G. D. Reddy, B. Bandyopadhyay. Design of periodic output feedback and fast output sampling based controllers for systems with slow and fast modes. Asian Journal of Control, vol. 14, no. 1, pp. 271–277, 2012. DOI: 10.1002/asjc.357.
|
[9] |
Y. Zhang, D. S. Naidu, C. X. Cai, A. Y. Zou. Singular perturbations and time scales in control theories and applications: An overview 2002–2012. International Journal of Informaton and Systems Sciences, vol. 9, no. 1, pp. 1–36, 2014.
|
[10] |
A. Tellili, N. Abdelkrim, A. Challouf, M. N. Abdelkrim. Adaptive fault tolerant control of multi-time-scale singularly perturbed systems. International Journal of Automation and Computing, vol. 15, no. 1, pp. 736–746, 2018. DOI: 10.1007/s11633-016-0971-9.
|
[11] |
R. G. Phillips. Reduced order modelling and control of two-time-scale discrete systems. International Journal of Control, vol. 31, no. 4, pp. 765–780, 1980. DOI: 10.1080/00207178008961081.
|
[12] |
V. Radisavljevic-Gajic. A simplified two-stage design of linear discrete-time feedback controllers. Journal of Dynamic Systems,Measurement,and Control, vol. 137, no. 1, Article number 014506, 2015. DOI: 10.1115/1.4028153.
|
[13] |
V. Radisavljevic-Gajic. Two-stage feedback control design for a class of linear discrete-time systems with slow and fast modes. Journal of Dynamic Systems,Measurement,and Control, vol. 137, no. 8, Article number 084502, 2015. DOI: 10.1115/1.4030088.
|
[14] |
B. Litkouhi, H. Khalil. Multirate and composite control of two-time-scale discrete-time systems. IEEE Transactions on Automatic Control, vol. 30, no. 7, pp. 645–651, 1985. DOI: 10.1109/TAC.1985.1104024.
|
[15] |
H. Kando, T. Iwazumt. Multirate digital control design of an optimal regulator via singular perturbation theory. International Journal of Control, vol. 44, no. 6, pp. 1555–1578, 1986. DOI: 10.1080/00207178608933686.
|
[16] |
B. Lennarston. Multirate sampled-data control of two-time-scale systems. IEEE Transactions on Automatic Control, vol. 34, no. 6, pp. 642–644, 1989. DOI: 10.1109/9.24238.
|
[17] |
R. Munje, D. Y. Gu, R. Desai, B. Patre, W. D. Zhang. Observer-based spatial control of advanced heavy water reactor using time-scale decoupling. IEEE Transactions on Nuclear Science, vol. 65, no. 11, pp. 2756–2766, 2018. DOI: 10.1109/TNS.2018.2873803.
|
[18] |
H. Yoo, Z. Gajic. New designs of reduced-order observer-based controllers for singularly perturbed linear systems. Mathematical Problems in Engineering, vol. 2017, Article number 2859548, 2017. DOI: 10.1155/2017/2859548.
|
[19] |
H. Yoo, Z. Gajic. New designs of linear observers and observer-based controllers for singularly perturbed linear systems. IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3904–3911, 2018. DOI: 10.1109/TAC.2018.2814920.
|
[20] |
M. Bidani, M. Djemai. A multirate digital control via a discrete-time observer for non-linear singularly perturbed continuous-time systems. International Journal of Control, vol. 75, no. 8, pp. 591–613, 2002. DOI: 10.1080/00207170210132978.
|
[21] |
H. Kando, H. Ukai, Y. Morita. Design of multirate observers and multirate control systems. International Journal of Systems Science, vol. 31, no. 8, pp. 1021–1030, 2000. DOI: 10.1080/002077200412168.
|
[22] |
H. Kando, H. Ukai. Design of reduced-order multirate observers and stabilizing multirate controllers via singular perturbation theory. Optimal Control Applications and Methods, vol. 19, no. 6, pp. 435–445, 1998.
|
[23] |
K. Kumari, B. Bandyopadhyay, K. S. Kim, H. Shim. Output feedback based event-triggered sliding mode control for delta operator systems. Automatica, vol. 103, pp. 1–10, 2019. DOI: 10.1016/j.automatica.2019.01.015.
|
[24] |
J. A. Isaza, H. A. Botero, H. Alvarez. State estimation using non-uniform and delayed information: A review. International Journal of Automation and Computing,vol.15, vol. 2, pp. 125–141, 2018. DOI: 10.1007/s11633-017-1106-7.
|
[25] |
C. T. Chen, Linear System Theory and Design, New York, USA: Oxford University Press, 1999.
|
[26] |
P. Kokotovic, H. K. Khalil, J. O′Reilly. Singular Perturbation Methods in Control: Analysis and Design, Philadelphia, USA: SIAM Publishers, 1999.
|
[27] |
D. S. Naidu, A. K. Rao, Singular Perturbation Analysis of Discrete Control Systems, Berlin, Germany: Springer-Verlag, 1985.
|
[28] |
A. J. Jerri. The Shannon sampling theorem-its various extensions and applications: A tutorial review. Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596, 1977. DOI: 10.1109/PROC.1977.10771.
|
[29] |
F. Ding, L. Qiu, T. W. Chen. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica, vol. 45, no. 2, pp. 324–332, 2009. DOI: 10.1016/j.automatica.2008.08.007.
|
[30] |
G. S. Ladde, S. G. Rajalakshmi. Diagonalization and stability of multi-time-scale singularly perturbed linear systems. Applied Mathematics and Computation, vol. 16, no. 2, pp. 115–140, 1985. DOI: 10.1016/0096-3003(85)90003-7.
|
[31] |
D. S. Naidu. Singular Perturbation Methodology in Control Systems, London, UK: Peter Peregrinus Ltd., 1988. DOI: 10.1049/PBCE034E.
|
[32] |
MATLAB. Simulink Control Design Toolbox User Manual, Math Works, Version 4.5, [Online], Available: https://in.mathworks.com/help/slcontrol/, 2017.
|