Machine Intelligence Research 22(4), August 2025, 783-796

www.mi-research.net DOI: 10.1007/s11633-024-1504-6

AdaGPAR: Generalizable Pedestrian Attribute

Recognition via Test-time Adaptation

Da Li! Zhang Zhang!:2 Yifan Zhang!:2 Zhen Jial Caifeng Shan?3

I New Laboratory of Pattern Recognition (NLPR), Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Intelligence Science and Technology, Nanjing University, Nanjing 210023, China

Abstract: Generalizable pedestrian attribute recognition (PAR) aims to learn a robust PAR model that can be directly adapted to un-
known distributions under varying illumination, different viewpoints and occlusions, which is an essential problem for real-world applic-
ations, such as video surveillance and fashion search. In practice, when a trained PAR model is deployed to real-world scenarios, the un-
seen target samples are fed into the model continuously in an online manner. Therefore, this paper proposes an efficient and flexible
method, named AdaGPAR, for generalizable PAR (GPAR) via test-time adaptation (TTA), where we adapt the trained model through
exploiting the unlabeled target samples online during the test phase. As far as we know, it is the first work that solves the GPAR from
the perspective of TTA. In particular, the proposed AdaGPAR memorizes the reliable target sample pairs (features and pseudo-labels)
as prototypes gradually in the test phase. Then, it makes predictions with a non-parametric classifier by calculating the similarity
between a target instance and the prototypes. However, since PAR is a task of multi-label classification, only using the same holistic fea-
ture of one pedestrian image as the prototypes of multiple attributes is not optimal. Therefore, an attribute localization branch is intro-
duced to extract the attribute-specific features, where two kinds of memory banks are further constructed to cache the global and attrib-
ute-specific features simultaneously. In summary, the AdaGPAR is training-free in the test phase and predicts multiple pedestrian at-
tributes of the target samples in an online manner. This makes the AdaGPAR time efficient and generalizable for real-world applica-
tions. Extensive experiments have been performed on the UPAR benchmark to compare the proposed method with multiple baselines.
The superior performance demonstrates the effectiveness of the proposed AdaGPAR that improves the generalizability of a PAR model
via TTA.
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1 Introduction

Pedestrian attribute recognition (PAR) aims at pars-
ing a pedestrian image into semantic descriptions with
multiple visual attributes, e.g., age, gender and clothing
styles. It has attracted extensive attention due to its
great application potentials, such as person retrievalll: 2],
person re-identification 4, and fashion searchl® 6. With
the success of deep-learning-based methods, the perform-
ance of PAR has been significantly improved.

However, in current studies on PAR, researchers typ-
ically rely on the independent and identically distributed
(i.i.d.) assumption, meaning that both the training set
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and test set share the same underlying distribution. Such
an assumption is far from the real-world application scen-
arios, where the trained model often faces a significant
domain gap between the training set (source domain) and
the deployed environment (target domain). For example,
a PAR model trained on a dataset collected in a shop-
ping mall (indoor) may fail to work in a college campus
(outdoor) where the data distribution is much different
with the change of location. Moreover, it is very challen-
ging and expensive to collect an all-encompassing dataset
for training a unified model due to the following reasons:

1) The target domain is complex and dynamic, with
variations in climates, illuminations, occlusions, and oth-
er factors. Collecting enough training samples for all pos-
sible situations within an acceptable time span is challen-
ging.

2) Considering the factors related to privacy, security
and safety, it is sometimes impractical to obtain the pri-
or knowledge about the distribution of pedestrian attrib-
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utes in the target domain.

Fig.1 illustrates the adverse impact of domain gap on
the PAR performance. Because of the large discrepancy
between Market1501[7 and RAPv2[l, the mean accuracy
(mA) and F; score drop by 22.7% and 22.5% respect-
ively when the model trained on Market1501 is directly
tested on RAPv2; And they drop by 15.5% and 23.6% re-
spectively vice versa. Therefore, it is a challenging and
promising direction to improve the capability of the PAR
model trained on source domains to recognize samples
from unseen domains directly, i.e., generalizable PAR
(GPAR).

Recently, Specker et al.B] propose the first public
benchmark termed UPAR, which unifies four popular
PAR datasets with 40 binary attributes and defines
standard training/test settings with the requirements of
GPAR. In addition, a GPAR baseline is also proposed,
which aggregates a number of tricks, such as data aug-
mentation, dropout and label smoothing, in the training
process to improve the model's ability of generalization
across different domains. Although the proposed baseline
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enhances the generalizability of the model to some extent,
it overlooks the domain information carried by the target
samples. Recent studiesl® 10 show that generalizing a
model to any unknown distribution is almost impossible
without exploiting the target samples during inference.
Thus, it is essential to explore test-time adaptation!l in
GPAR tasks.

In this work, we propose a novel method, named Ad-
aGPAR, for generalizable PAR via test-time adaptation
(TTA) to exploit the online test samples from target do-
main during the inference stage without requiring any an-
notation information. Noted that, the setting of our work
is significantly different from the settings of unsupervised
domain adaption (UDA)!2 and source-free domain adapt-
ation (SFDA)Il. The UDA aims at improving the
model’s performance in unseen target domain by updat-
ing the model based on both the labeled training samples
from source domain and unlabeled training samples from
target domain. Though the SFDA mitigates the depend-
ence on the training samples from source domain, it still
needs to access all the training samples (unlabeled or par-
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Fig. 1 An illustration for the negative influence of domain gap on the performance of PAR. (a) illustrates the data distributions of
Market1501(71 and RAPv2[l in the feature space. (b) and (c) display the recognition results of mA and Fi, respectively. M is short for
Market1501 and R is short for RAPv2. M— M: Train and test on Market1501. M— R: Train on Market1501 and test on RAPv2. R—R:
Train and test on RAPv2. R—M: Train on RAPv2 and test on Market1501. (Colored figures are available in the online version at

https://link.springer.com/journal/11633)
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tial labeled) of target domain to update the trained
source model. Such setting is impractical for the real-
world applications due to the limitations on privacy and
safety. However, from the perspective of TTA, only the
model trained in the source domain and the unlabeled
test samples from target domain in an online manner are
available in the inference phase. It is much closer to the
requirements of real-world applications.

Inspired by the work AdaNPC[4, we store the reli-
able target sample pairs (feature and predicted pseudo-la-
bel) to memory as the prototypes, which will be utilized
to predict the results of a target sample based on the
non-parametric classifier. However, as a problem of multi-
label classification, a pedestrian image usually has mul-
tiple attribute labels. A sample that is reliable for one at-
tribute may not be reliable for the others. Therefore, only
retaining the holistic feature of one pedestrian image as
different attribute prototypes will not be the optimal
choice for attribute prediction in an unseen domain. To
tackle this challenge, we construct the network in train-
ing phase through extending the popular PAR strong-
baselinel!s] with an attribute localization branch to ex-
tract the attribute-specific features. Specifically, two
kinds of memory banks are built to store both the global
and attribute-specific features as attribute prototypes at
different granularity levels. Then, the classification res-
ults based on the two kinds of prototypes are fused to en-
hance the robustness of attribute prediction in unseen do-
main. Note that the proposed AdaGPAR is training-free
in the inference phase and predicts the attributes on tar-
get domain in an online manner. Thus, the proposed
method is more efficient for the real-world applications.

In summary, the contributions of this paper are as fol-
lows:

1) A new paradigm is proposed to solve the task of
GPAR with TTA by exploiting the domain information
contained in the target samples. As far as we know, it is
the first work that improves the generalization ability of
a PAR model from the perspective of TTA.

2) A TTA-based method, named AdaGPAR, is
presented to enhance the PAR accuracy in target do-
mains without backward gradient updating. It predicts
the attributes of target samples in an online manner,
which is time efficient and flexible for real-world applica-
tions.

3) Extensive experiments are performed on the
UPARE] benchmark. In comparison with the baseline in
[8] and the other two TTA-based methods, the proposed
AdaGPAR obtains superior performance.

2 Related work

2.1 Pedestrian attribute recognition

Most of current studies on PAR usually concentrate
on enhancing recognition accuracy on specific datasets.
Deep learning is commonly utilized in these approaches to

acquire robust feature representations. The early deep-
learning-based methods(!6: 17 typically train a holistic
CNN model for joint multi-attribute classification. A
number of later approaches use auxiliary information,
such as posel’¥l or body parts/l9, to improve attribute loc-
alization. Instead of using the auxiliary part-based in-
formation, many recent approaches2022l design various
attention modules to enhance the performance of attrib-
ute recognition. Yang et al.20] design a cascaded split-
and-aggregate model that learns both the individuality
and commonality among attributes. This model uses an
attribute-specific attention module to locate the most in-
formative region for each attribute. Guo et al.2ll intro-
duce two types of attention-consistency losses. These
losses ensure that a pedestrian image maintains an equi-
valent attention map across various spatial transforms as
well as consistent attention maps across different net-
works. Liu et al.22l propose a dual-branch self-attention
network for PAR that learns the attribute-specific fea-
tures and regional contextual features simultaneously.
Due to the difficulties in localizing the fine-grained attrib-
utes, some researchers23-23 resort to explore the relations
among multiple attributes. Tan et al.23] propose a uni-
fied graph convolutional network (GCN) that jointly
models both the semantic and contextual relations. Fan
et al.24 construct a relationship framework using GCN to
model various types of relations among attributes, includ-
ing inner-relations, hierarchical-relations, and spatial-rela-
tions. Cheng et al.[?%] incorporate the textual modality to
explore the textual correlations among attribute annota-
tions and utilize the transformer encoder to capture both
the intra-modal and cross-modal correlations. In addition,
Weng et al.26l enhance PAR performance by delving into
both the attribute localization and correlation, where the
authors exploit the attention mechanism to extract at-
tribute-specific features and employ the transformer en-
coder to model the attribute correlations.

Currently, fine-tuning the foundation model on the
downstream tasks has become a prevalent paradigm in
computer vision. A number of human-centric foundation
models729 have also been released. All of them obtain
impressive recognition accuracy on the downstream task
of PAR.

However, all the aforementioned studies neglect the
challenges encountered in the real-world application, i.e.,
category shift and domain shift. Different from the tradi-
tional PAR work, Li et al.B0 formulate the incremental
PAR as a problem of multi-label continual learning with
incomplete labels. To tackle the category shift, the au-
thors propose a self-training based approach via dual un-
certainty-aware pseudo-labeling to transfer the know-
ledge learned in previous tasks to novel tasks. For the is-
sue of domain shift, Specker et al.lfl present a novel
benchmark, named UPAR, for GPAR through unifying
four popular PAR datasets (domains) with 40 binary at-
tributes. The authors also propose a baseline method that
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aggregates several techniques, such as dropout, data aug-
mentation and label smoothing, in the training process to
enhance the generalizability of PAR model across differ-
ent domains. However, it overlooks the domain informa-
tion carried by the target samples. Instead, our work ex-
plores the GPAR from the perspective of TTA[ to mit-
igate the above issue.

2.2 Test-time adaptation

Test-time adaptation (TTA) provides a flexible
strategy for domain generalization (DG), which aims to
adapt the model trained in source domain (source model)
to unseen domains using the online unlabeled target
samples solely before making prediction!l]. Numerous ap-
proaches for TTA have been proposed in recent years,
which can be typically divided into two categories, i.e.,
test-time training (TTT) methods and fully TTA meth-
ods.

TTT methodsBl 32 fine-tune the source model via
auxiliary self-supervised learning task during the test
phase. Sun et al.Bl design a task for rotation classifica-
tion to predict the rotation angle of rotated images. Liu
et al.32 propose to learn an extra self-supervised branch
based on contrastive learning in the source model. The
main characteristic of TTT is that the source model is
trained with both the supervised loss (main task) and
self-supervised loss (auxiliary task) simultaneously based
on a multi-task architecture. It modifies the original
training procedure that may be not feasible in the real-
world applications.

Different from the TTT methods, fully TTA methods
need not change the training procedure of source model.
They typically adapt the trained model solely with tar-
get samples using normalization-based methodsl33 34, en-
tropy minimizationl35: 36l or prototype-based method37.
Besides the above approaches, Jang et al.l3¥l propose a
TTA method via self-training with nearest neighbor in-
formation to mitigate the confirmation bias. Wang
et al.B% address TTA as a problem of feature revision.
The authors propose a self-distillation strategy to ensure
the feature uniformity at test time and also present a
memorized spatial local clustering strategy to align the
representations among the neighborhood target samples.
In addition, Zhang et al.[4l propose a novel TTA method
under a non-parametric paradigm by storing features and
predicted pseudo-labels of the target samples. This meth-
od is parameter-free and can also effectively alleviate the
knowledge forgetting in the continual adapting. It is
worth noting that the aforementioned approaches are val-
idated for conventional classification tasks. Our work de-
votes to adapt the TTA method to GPAR which is a
problem of multi-label classification.

Moreover, some studies!!] also classify the source-free
domain adaptation (SFDA)!] as a type of TTA.
However, SFDA can access all the unlabeled target
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samples to adapt the source model, which may be imprac-
tical in real-world applications. Therefore, our work
mainly focuses on improving the generalizability of a
PAR model with the target samples in an online manner.

3 Problem definition

We formulate the GPAR from the perspective of
TTA. In particular, we consider a source domain dataset
D® = {(=f,y;)}.2,, where (xf,y;) is sampled i.id. from
a distribution D®, n, is the total number of samples in
D® and y; € {0,1}™* is a multi-hot label vector for the
training sample @ in which ms is the number of annot-
ated attributes. The GPAR aims to train a model © on
the source domain D*® which can perform well on the un-
ng
i=17

sample x! is sampled from a distribution D? (D’ # D*)

seen target domain D' = {x}} where the target
and n; is the number of samples in D!. According to the
definition of TTA, only the trained model ® on D® and
the unlabeled target samples x! in an online manner are
available when we make predictions on D! in the test
phase. In summary, the characteristics of GPAR in our
work are as follows:

1) In the training phase, the PAR model © is trained
with D? solely.

2) D' # D*, which is known as domain shift/gap.

3) In the test phase, only © and x! are available in
an online manner.

Noted that, 1) our work focuses on mitigating the
problem of domain shift, so we assume that the source
domain and the target domain have the same attribute
categories. Thus, the number of attributes in D¢, i.e., ms,
equals ms. 2) The samples in D° are only sampled from a
single domain, while the D! may consist of multiple data-
sets.

4 Method

Fig.2 displays an overview of the proposed AdaG-
PAR, which consists of two components, i.e., model train-
ing on source domain (training phase) and model adapta-
tion on target domains via TTA (test phase). In order to
predict the attributes of a target sample in the test
phase, one key step in AdaGPAR is to cache the reliable
target samples for each attribute category. However, a
pedestrian image possesses multiple binary attributes. A
pedestrian image that is reliable to one attribute with
high prediction confidence may be not reliable to other
attribute categories. Thus, if we only memorize the glob-
al features that will inevitably interfere the further pre-
diction based on measuring the similarities between the
feature of a target sample and the cached features in
memory. To alleviate this issue, two strategies are ap-
plied in AdaGPAR. For one thing, an attribute localiza-
tion branch is introduced to the source model to extract
the attribute-specific features; For another thing, two
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An overview of the proposed AdaGPAR. It consists of two components, i.e., (a) model training on source domain and (b) model

adaptation on target domains via TTA. M is the number of attribute categories, ALM is short for attribute localization module, FC is
short for fully-connection, and P; denotes the prediction results of the target sample. (Colored figures are available in the online version

at https://link.springer.com/journal /11633)

types of memory banks are constructed to store the hol-
istic features and attribute-specific features simultan-
eously. This section will explain them in detail from the
following two aspects.

4.1 Model training on source domain

For the source domain, we build a two-branch PAR
model through extending the popular PAR method, i.e.,
strongbaselinell?l, with an attribute localization branch.
As shown in Fig.2(a), the global branch inherits the ori-
ginal structure of strongbaseline. Inspired by the work
[40], the localization branch contains M1 attribute local-
ization modules, each of which consists of a squeeze-and-
excitation (SE) module! to exploit the inner-channel
correlations of the input feature maps, followed by a spa-
tial transformerl42 to localize the attribute-specific re-
gions. The two branches share the same backbone. We
apply the localization branch to the feature maps of the
final layer.

Fig.3 presents the detailed structure of an attribute
localization module. When the feature maps of the final
layer, termed as Z;, is input to the localization module, a
weight vector will be first generated by the SE module.
The weight vector is multiplied by Z; channel-wisely to
produce the weighted features which are further added to
Z; to preserve the complementary information. The out-
put of SE module, Z;, is then fed into the spatial trans-
former to generate the attribute-specific features. Specific-
ally, a fully-connected layer takes the input Z; to estim-
ate the parameters of the transformation matrix 7. 7o is
subsequently applied to Z; and then sampled by bilinear
interpolation to generate the attribute-specific feature
maps Z;; which are further utilized for attribute predic-

tion.

I M denotes the number of attribute categories. We assume

ms = m¢ = M in this work.

We optimize the PAR model with weighted binary
cross entropy (BCE) loss. For one of the two branches,
the BCE loss is defined as follows:

. 1nsM @
e L5 (s 4)

(1 —yi;)log (1 - ﬁ?j)) (1)

where y;; is the ground truth label for the i-th sample in
D?® about the j-th attribute and ﬁfj is the corresponding
prediction result by branch b € {global, localization}. w;
denotes the loss weight for the j-th attribute to mitigate
the distribution imbalance. w; is calculated as follows:
Lo Jexp (1 =) /8%), ifyy =1 @)
i = .

exp (fyj/52) , ify;; =0
where +7; is the ratio of positive samples for the j-th
attribute and § is the temperature parameter which is set

to 1 in this work. Finally, the total loss is formulated as
I = Lglobal + Llocalizatian

4.2 Model adaptation via TTA

In this work, the proposed AdaGPAR predicts the at-
tributes on target domains only with the source model
and unlabeled target samples in an online manner. In-
spired by the work AdaNPCl4, AdaGPAR constructs
two kinds of memory banks to cache the reliable global
features and attribute-specific features, respectively. As
displayed in Fig.2(b), for an unseen target sample x! in
the test phase, it is fed into the source model to obtain
the predictions of the linear classifiers and capture the re-
lated features. Specifically, we can get two kinds of pre-
diction results, i.e., the output of the global branch pJ
and the output of the localization branch p.. Similarly,
the global features z! and a group of attribute-specific
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Fig. 3 An illustration for the attribute location module. It consists of a squeeze-and-excitation (SE) modulel!!l and a spatial
transformer(*?. The output Z;; denotes the feature maps for the j-th attribute of sample i.

! M _l
features 2z; = UJ 1 %2i; are extracted. Then, we predict

the attribute categories of ! by the non-parametric clas-
sifier via calculating the feature similarity with the vec-
tors stored in the memory banks. Subsequently, z/ and
z! will be selected to update the memory banks if they
are determined as reliable. Algorithm 1 presents the de-
tailed procedure.

Algorithm 1. Attribute prediction via AdaGPAR
Input: ©, !, G-MB, AS-MB

Output: p}

1) {zg Uz 1zmpz,pl} o

2) // Attribute prediction with kNN.

3) Confirm 7 (x}) using kNN based on z{ and vectors
in G-MB;

4) Confirm nAs (wf) using attribute-wise kNN based on
U;\il zéj and vectors in AS-MB;

P! = elmaz (n° (x}) ,n*% (x}));

Update G-MB using (z7,p7);
) end if

) // Update AS-MB.

) , M} do
13) // Positive.

) if Rpos (2l;,5;) == 1 then

) Add (zfj,ﬁﬁj) to the block of the j-th attribute

in AS-MB as positive vector;

) end if
17) // Negative.

) if Rueg (2i;,5%;) == 1 then

) Add (zﬁj,ﬁéj) to the block of the j-th attribute

in AS-MB as negative vector;
20) end if
21) end for
4.2.1 Memory bank construction

Global memory bank and attribute-specific memory
bank are constructed in this work. The following inter-
prets the two kinds of memory banks from the aspects of
reliable data selection and memory bank updating.
Global memory bank (G-MB) is used to store the

reliable target features and their prediction scores ob-
tained by the global branch. Since the global features

@ Springer

cover knowledge about all the attributes, it may not be
optimal to memorize the samples with high predicted
scores on just a few categories. To tackle this issue, we
calculate the attribute-wise entropy based on the predic-
tion results p?. Then, the mean value is computed to fur-
ther compare with a constant threshold. In particular, the
criterion for @! is defined as follows:

1 M

Cf = g o owRl + (LA lox (1-55)  (3)

where p7; is the prediction score about the j-th attribute
of x! obtained by the global branch. The pair (2¢,pJ) is
selected to update the G-MB when C/ < T,. T, is set to
0.4 in the experiments. These reliable pairs in the
memory bank act as the support vectors (attribute
prototypes) for the subsequent prediction based on the
non-parametric classifier. As the memory is large enough
to cache the reliable global features in our experiments,
we just add the selected (zJ,pJ) to the end of G-MB
directly. When AdaGPAR is employed to the real-world
scenarios, we can clear the early data with higher value of
CY gradually to satisfy the constraint on memory size.

The criterion used in G-MB still has two limitations:
1) Equation (3) enforces to choose the samples with lower
entropy about all the attributes. It inevitably abandons
lots of samples that contain useful knowledge for some at-
tributes. 2) The constraint on the mean value cannot en-
sure that the entropy of each attribute satisfies the
threshold. This will inevitably introduce noisy informa-
tion.

Attribute-specific memory bank (AS-MB) is con-
structed to mitigate the above problems. Different from
the G-MB, AS-MB includes M blocks (as shown in
Fig.2(b)), in which each block relates to an attribute cat-
egory. Thus, we can operate the memory in attribute
level feasibly. Recognizing a single attribute is indeed a
task of binary classification. So, both the positive and
negative samples for an attribute are selected to store to
the AS-MB. For convenience, we make decision based on
the output of localization branch p. directly. (zfj,ﬁﬁj) is
chosen as a reliable positive pair if the output of function
Rpos (zﬁj,ﬁéj) is 1. The definition of Ryos (zﬁj,ﬁéj) is as
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follows:
1, ifpi; > TP
Rpos (ngyﬁij) = ’ lJ ! (4)
0, ifp;; < T7°*
where T7°® is a constant threshold, and it is set to 0.9 in

our work. Similarly, (zﬁj,ﬁéj) is chosen as a reliable

negative pair if the output of function Riyeq (zﬁj,]ﬁﬂj) is 1.
. S Il

(5) provides the definition of Ryeq (zij,pij),

1, ifp; < T
Rne (quﬁvl.) = ! 5
g gy ig 0, ifﬁé]’ > T?eg ( )

where T} is also a constant threshold which is set to
0.15 in this work.

Noted that, the number of negative samples is much
larger than that of positive samples for one attribute. It
may lead to the problem of out-of-memory (OOM) if we
store the large-scale negative data continuously. There-
fore, we set the maximum size of negative data for each
attribute block in AS-MB. When the negative part of a
block reaches the maximum size, the previous negative
pairs with maximum ﬁﬁj will be removed.

4.2.2 Attribute
classifier

In the proposed AdaGPAR, k-nearest neighbours
(kNN) is utilized to predict the attributes of target
samples in an online manner based on the data cached in

prediction via non-parametric

the memory bank.

To avoid confusion, we use (va,QkG) to represent a
pair that is read from G-MB, where v$ is one of the
cached global features and 9§ is the corresponding pre-
diction results (pseudo-labels). Given an unseen sample
x!, its prediction score is calculated as follows:

¢ (wf) = sigmoid <Z wlkﬁkc> (6)

ke

where w;; is the cosine similarity between zf’ and v,f. K
is a set for the top K closest vectors to z/ in the G-MB.
And K =5 in the experiments for the G-MB. Different
from AdaNPC[4, which initializes the memory bank with
the features of source samples, we only store the features
of target samples. When the number of support vectors in
the memory bank is less than K x L, we will enforce the
n? (z!) to equal the prediction scores of the source
model. L is set to 50 for the G-MB.

It has the similar procedure to obtain the prediction
results n?° (:1:5) based on the vectors stored in AS-MB.
The sole difference is that we calculate prediction score
attribute by attribute. Concretely, the K is set to 50 and
L is set to 4 for AS-MB empirically.

Finally, the prediction scores of x! are obtained by
performing element-wise maximum between n¢ (a:f) and

5 Experiments

5.1 Dataset and evaluation metrics

We evaluate the effectiveness of proposed AdaGPAR
on the UPARB dataset, which is built through unifying
four popular PAR datasets, i.., Market1501[7,
PA100kM43], PETAMY and RAPv2[ll. UPAR dataset con-
tains 224 737 pedestrian images with 40 binary attributes
over 12 categories. It is now the sole benchmark for
GPAR. Four kinds of partitions (as shown in Table 1)
are used to measure the performance.

Table 1 Different data partitions in UPAR. “Part.” is short for
partition. M, PA, P and R denote Market1501, PA100k,
PETA and RAPv2, respectively.

Source domain Target domain

Part. Dataset # Training samples Dataset # Test samples
1 M 16 289 R,P,PA 32766
2 PA 88923 R,P,M 35873
3 P 10 402 R,PA, M 38 896
4 R 63 264 P,PA,M 30 042

Three types of metrics are adopted to evaluate the
performance of AdaGPAR, i.e., mean accuracy (mA), in-
stance-based metrics, and mFive. mA[l is a kind of label-
based metric, which intuitively measures the ability of a
PAR model to complete one visual attribute recognition
task. Instance-based metrics!!l include accuracy, precision,
recall rate, and Fi score. They are used to measure the
consistence of all attributes occurring in a given pedestri-
an image. mFivel is the average of five criteria in-
volving mA and the instance-based metrics. It offers a
more comprehensive evaluation of different methods, as it
avoids the problem of some methods excelling at one spe-
cific metric but performing poorly at others.

5.2 Implementation details

ResNet50145 and ConvNeXt-Bl0l are adopted as the
backbone in this work. They are pretrained on the Im-
ageNet dataset.

In the training phase, we follow the settings in the
UPARH to fine-tune the model with above two back-
bones. In particular, the input images are resized to
256 x192. We augment them with random horizontal mir-
roring, random cropping, and AugMix. The Adam optim-
izer is used with initial learning rate of 1x10* and weight
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decay of 5x10%. And the plateau scheduler is applied to
reduce the learning rate with a factor of 0.1 when the
evaluation results are not enhanced for four epochs. We
set the batchsize to 32 for Market1501 and PETA, while
it is set to 64 for PA100k and RAPv2. Moreover, label
smoothing and exponential moving average (EMA) are
also applied to improve the model performance.

In the test phase, we predict the attributes of target
samples online using the source model and the data
cached in the memory bank without backpropagation. Se-
quences of the unseen samples with different orders and
different batchsizes are adopted to evaluate the effective-
ness of AdaGPAR. Without specification, the following
experimental results are obtained with the sequence of
default order and the batchsize of 8.

5.3 Comparison with different baselines

The final performance of proposed AdaGPAR and
three baselines (one is for the baseline of UPAR, and the
other two are the TTA-based methods) on UPAR data-
set are presented in Table 2, where the mean values and
the variances are reported over four different data parti-
tions (shown in Table 1). These experimental results are
obtained with two kinds of backbones, i.e., ResNet50[45]
and ConvNeXt-Bl46l. The detailed results of each data
partition are listed in the supplementary material.

Compared to the reproduced results of UPAR
baselinel8] (UPAR* in Table 2), the proposed AdaGPAR
produces superior performance in terms of mA and F;
score. In particular, the values of mA are enhanced by
1.0% and 2.0% with ResNet50 and ConvNeXt-B, respect-
ively. T3AB7 and AdaNPCI4 are two TTA-based
baseline methods that are reproduced to fulfil the task of
PAR, in which only the global features are considered.
T3A exceeds the results of UPAR on mA, and AdaNPC
obtains impressive performance on F; scores. However,
the two methods only utilize the global features which in-
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evitably introduce interference information in selecting re-
liable samples for each category. Thus, none of them can
achieve superior performance on both mA and F; score.
Different from T3A and AdaNPC, both the global and
attribute-specific features are considered in the AdaG-
PAR. Thus, AdaGPAR attains the best performance on
mA with comparable results of F1 scores. We also calcu-
late the mFivel?) as a comprehensive evaluation metric
(the last column in Table 2). We can find that AdaG-
PAR obtains the best performance on the metric mFive
with both the backbones of ResNet50 and ConvNeXt-B,
which demonstrates its effectiveness.

5.4 Ablation study

5.4.1 Effectiveness of key components

The mechanism of TTA and attribute localization
branch are the key components of AdaGPAR. We apply
them to the strongbaselinel¥l and UPAR baselinel!l re-
spectively to validate their significance in improving the
performance on target domain. The contribution of each
term is shown in Table 3. Both the mA and F; score are
enhanced when the TTA is utilized with the backbones of
ResNet50 and ConvNeXt-B. The superior performance in-
dicates the effectiveness to improve the generalization by
exploiting the domain information contained in un-
labeled target samples. However, the improvement on mA
is not significant if we only memorize the global features
which compound the knowledge about all the attributes.
The mA is enhanced by more than 1.0% and 1.5% for
ResNet50 and ConvNeXt-B respectively when the localiz-
ation branch (L.B.) is further introduced to the network
to extract the attribute-specific features. Moreover, they
also obtain the best performance on mFive when the
TTA and L.B. are used simultaneously (“+TTA&L.B.”).
The superior performance demonstrates the effectiveness
of AdaGPAR to mitigate the issue of domain shift. The
experimental results also indicate the flexibility of AdaG-

Table 2 Comparison with different baselines on UPAR dataset. “*” denotes that we reproduce these baselines following the
recommended setups. The bold and underline values demonstrate the best and second-best results, respectively.

Methods Backbone mA (%) Accuracy (%) Precision (%) Recall (%) Fy score (%) mFive (%)
ResNet50 67.0+2.5 - - - 74.2+4.5 -
UPARII
ConvNeXt-B 70.5+1.9 - - - 80.1+2.7 -
ResNet50 67.4+2.6 59.5+5.4 73.8+4.2 72.8+4.9 73.3+4.4 69.3
UPAR*BI
ConvNeXt-B 70.4+£3.2 67.8£5.0 80.6+4.1 78.9+3.3 79.7£3.7 75.5
ResNet50 68.3+3.5 57.5+5.1 70.8+4.7 72.8+3.9 71.8+4.3 68.3
T3A*[37]
ConvNeXt-B 71.5+4.0 65.9+4.5 78.7+3.4 78.0+3.4 78.3+3.4 74.5
ResNet50 65.8+2.4 60.4+5.3 76.2+4.2 72.0+£4.7 74.0£4.2 69.7
AdaNPC*[14]
ConvNeXt-B 69.6+£2.9 68.5+4.7 81.94+3.8 78.5+3.2 80.2+3.4 75.7
ResNet50 68.4+3.3 60.3+6.3 71.3+4.9 77.1+£5.5 4.1+5.1 70.2
AdaGPAR (ours)
ConvNeXt-B 72.4+2.8 67.9+4.5 78.1+4.0 81.8+2.5 79.94+3.3 76.1
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Table 3 Ablation analysis for the key components in proposed AdaGPAR. “UPAR*” and “strongbaseline*” denote that we reproduced
these methods with recommended setups. L.B. is short for localization branch. The values listed in this table are

obtained through averaging the results of four different data partitions.

Methods Backbone mA (%) Accuracy (%) Precision (%) Recall (%) F1 score (%) mFive (%)
ResNet50 66.0 57.0 73.1 69.5 71.2 67.3
Strong baseline*[15]
ConvNeXt-B 70.3 67.2 81.4 77.4 79.3 75.1
ResNet50 66.6 57.6 71.0 72.7 71.8 67.9
+TTA
ConvNeXt-B 70.8 67.7 80.4 79.1 79.7 75.5
ResNet50 67.1 58.6 70.6 74.9 72.7 68.8
+TTA&L.B. (AdaGPAR)
ConvNeXt-B 71.9 67.3 7T 81.5 79.5 75.6
ResNet50 67.4 59.5 73.8 72.8 73.3 69.3
UPAR*8
ConvNeXt-B 70.4 67.8 80.6 78.9 79.7 75.5
ResNet50 67.6 60.1 72.5 75.2 73.9 69.9
+TTA
ConvNeXt-B 70.9 68.3 79.4 80.8 80.1 75.9
ResNet50 68.4 60.3 71.3 77.1 74.1 70.2
+TTA&L.B. (AdaGPAR)
ConvNeXt-B 72.4 67.9 78.1 81.8 79.9 76.1

PAR that it can cooperate with the conventional PAR
model and existing DG methods to improve the perform-
ance.

To further verify the effectiveness of the localization
branch (L.B.), we replace it by applying the class activa-
tion mapping (CAM)[7 on the global feature maps to get
the attribute-specific features. The ablation results based
on UPAR baselinel8! are shown in Table 4. The experi-
mental results indicate that the performance of mA can
be improved by extracting the attribute-specific features
with CAM (“+TTA&CAM”). However, the values of mA
and mFive are inferior than those of the proposed AdaG-
PAR (“+TTA&L.B.”). It demonstrates that the L.B. in
AdaGPAR is more effective than CAM to improve the re-
cognition performance in the target domain.

5.4.2 Sensitivity to sequence properties

In the test phase, the AdaGPAR is applied to the tar-
get sample in an online manner, where the target samples
compose a sequence. We perform a number of experi-
ments based on multiple sequences with different orders
and processing batchsizes to verify whether the two prop-

erties will impact the recognition accuracy significantly.
Sequence order. In the real-world application scen-
arios, test samples in the sequence may be sampled from
a variety of distributions. Thus, the model may be ap-
plied to the test samples from a seen distribution again
after the model is updated with the samples from other
different distributions. To verify the effectiveness of pro-
posed AdaGPAR for this challenge, five sequences of tar-
get samples with different orders are generated in our ex-
periments. As shown in Table 1, the target domain in
UPAR dataset consists of three different datasets. For
the default order, the target samples within each dataset
are arranged together for ordering. It means that the seen
distribution will not appear again when all the samples
from this distribution are processed. Besides the default
order, we shuffle the target samples for each data parti-
tion under four distinct seeds. Thus, a mini-batch in the
sequence may consist of target samples from different dis-
tributions (seen or unseen). Fig.4 presents the trends of
mA and F; score with different orders based on two
backbones. Their values are also obtained through aver-

Table 4 Ablation study on the localization branch (L.B.). “*” denotes that the UPAR baseline is reproduced with
recommended setups.

Methods Backbone mA (%) Accuracy (%) Precision (%) Recall (%) F score (%) mFive (%)
ResNet50 67.4 59.5 73.8 72.8 73.3 69.3
UPAR*8
ConvNeXt-B 70.4 67.8 80.6 78.9 79.7 75.5
ResNet50 67.6 60.1 72.5 75.2 73.9 69.9
+TTA
ConvNeXt-B 70.9 68.3 79.4 80.8 80.1 75.9
ResNet50 67.7 60.1 72.3 75.5 73.9 69.9
+TTA&CAM
ConvNeXt-B 71.1 68.3 79.2 81.1 80.1 76.0
ResNet50 68.4 60.3 71.3 77.1 74.1 70.2
+TTA&L.B. (AdaGPAR)
ConvNeXt-B 72.4 67.9 78.1 81.8 79.9 76.1
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Fig.4 The trends of mA and F; score with different sequence orders. The mA and F; score are obtained by averaging the results of
four data partitions. The processing batchsize is set to 8. Left: mA; Right: F score. (Colored figures are available in the online version at

https://link.springer.com/journal/11633)

aging the results of four data partitions. We can find that
the sequence order plays little effect on the mA and F;
score. It demonstrates the effectiveness of AdaGPAR to
alleviate the aforementioned challenge.

Processing batchsize. We set five different pro-
cessing batchsizes, i.e., {2, 4, 8, 16, 32}, to verify the in-
fluence on recognition accuracy. The average results of
four data partitions are shown in Fig.5. We can find that
the mA and F; score decrease slightly with two different
backbones when the batchsize ranges from 2 to 32.

However, the influence is also not significant, where the
differences between maximum and minimum are less than
0.2% for both the mA and F; score. Noted that, the
elapsed time in test phase increases gradually along with
the reducing of batchsize. Therefore, we set it to 8 as a
compromise of accuracy and elapsed time.

5.5 Memory usage and inference time

Memory usage. Two kinds of memory banks, includ-

| —#— ResNet50

—¥— ConvNeXt-B |

74 82
73
7249 72.42 733 g0 {300 79,95 79.83
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= 71 4 G\\c/ 78 1
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Fig. 5

The trends of mA and F; score with different processing batchsizes. The mA and F; score are obtained by averaging the results

of four data partitions. The sequence follows the default order. Left: mA; Right: F; score. (Colored figures are available in the online

version at https://link.springer.com/journal /11633)
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ing G-MB and AS-MB, are built to implement AdaG-
PAR. For the G-MB, consider an extreme case that we
memorize all the target samples of the third partition in
Table 1, the memory cost is about 79.66 MB (38 896 x
2048B) for ResNet50. For the AS-MB, we set a fixed
size, i.e., 5000, to cache the reliable negative features for
one attribute in our experiments. We also consider an ex-
treme situation that the size for positive samples is set to
5000 as well (the number of positive samples of each cat-
egory is usually less than 5000). Thus, the memory cost
of AS-MB for 40 different attributes is about 102.4 MB
(40 (5 000+5 000) x 256 B). It is easy to accommodate the
two kinds of memory banks on current servers.

Inference time. We provide a comparison of infer-
ence time for the baselines and AdaGPAR. All the exper-
iments are performed with a NVIDIA RTX Titan GPU.
As shown in Table 5, though the kNN search in both the
G-MB and AS-MB aggravates the time consumption of
AdaGPAR compared with the baseline methods, it can
complete the inference in real-time. Thus, it is feasible to
employ the AdaGPAR to the real-world scenarios.

Table 5 A comparison of inference time for different methods.
Each experiment is conducted three times to compute the
average inference time.

Methods Backbone Inference time (ms)
ResNet50 2.40
UPAR
ConvNeXt-B 4.50
ResNet50 7.45
T3A
ConvNeXt-B 8.88
ResNet50 4.44
AdaNPC
ConvNeXt-B 5.65
ResNet50 15.31
AdaGPAR (ours)
ConvNeXt-B 16.44

Analysis. The proposed AdaGPAR performs attrib-
utes prediction in target domain through kNN searching
in the two kinds of memory banks. The memory usage
and inference time are increased. However, the proposed
AdaGPAR is training-free, only the online test samples
from target domain are selected to capture the distribu-
tion information. Compared with simply enlarging the
number of model parameters and extending the training
time in the source domain, is the introducing of TTA a
better choice to improve the model's generalizability? To
verify the superiority of proposed AdaGPAR, we replace

the backbone of UPAR baseline by the ResNet101, whose
size is about 1.7 times larger than that of AdaGPAR
(163.1MB VS 94.0MB). The increasing number of model
parameters results in longer training time. For example,
the training time is increased by 22.5 minutes approxim-
ately based on the third partition of UPAR dataset.
Table 6 presents the comparison results between AdaG-
PAR and UPAR baseline with the ResNet101 backbone.
We can find that the proposed AdaGPAR based on Res-
Net50 can also obtain superior performance than the UP-
AR baseline with ResNet101. It demonstrates that TTA
is more effective than simply expanding the number of
model parameters for improving the generalizability of a
model.

5.6 Limitations

Our work has some limitations. 1) Choosing the reli-
able features for different attributes is one of the key
steps in AdaGPAR. We now determine the features of a
sample as reliable only based on the prediction scores.
However, the high prediction score may not be enough to
indicate the reliability of one feature belonging to an at-
tribute prototype. Therefore, we will introduce the uncer-
tainty estimation in the future work to alleviate the
above issue. 2) Since the kNN classifier is adopted to pre-
dict the attributes, the representation ability of the
source model plays an important role to get satisfied ac-
curacy. However, the backbones used in our work are all
pretrained with ImageNet which has a remarkable do-
main gap with pedestrian images. This problem will inev-
itably interfere the robustness of extracted features. So,
we will introduce the human-centric foundation model in
the future work to further improve the performance in
target domain.

6 Conclusions

This paper focuses on the problem of generalizable
pedestrian attribute recognition (GPAR), which poses a
great challenge in real-world applications. Though numer-
ous approaches of domain generalization have been pro-
posed to tackle the issue of distribution shift, they usu-
ally concentrate on the data of source domain solely but
overlook the domain information carried by the target
samples. Therefore, we propose a novel method for
GPAR, named AdaGPAR, from the perspective of test-
time adaptation (TTA). The proposed AdaGPAR per-

Table 6 Performance comparison between the proposed AdaGPAR and the UPAR baseline with the ResNet101 backbone.

ko

denotes that the UPAR baseline is reproduced with recommended setups.

Methods Backbone Model size mA (%) Accuracy (%) Precision (%) Recall (%) F1 (%) mFive (%)
ResNet50 90.3 MB 67.4 59.5 73.8 72.8 73.3 69.3
UPAR*[I
ResNet101 163.1 MB 68.2 60.2 73.5 74.3 73.9 70.0
AdaGPAR (ours) ResNet50 94.0 MB 68.4 60.3 71.3 77.1 74.1 70.2
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forms prediction only based on the source model and un-
labeled target samples in an online manner without addi-
tional training. Specifically, two kinds of memory banks
are constructed to cache the reliable features of both
global and attribute-specific types with their prediction
scores. The kNN classifier is subsequently adopted to pre-
dict attributes based on the memorized data. Thus, the
AdaGPAR is training-free in target domain and can be
employed to real-world scenarios flexibly. Extensive ex-
periments are conducted on the UPAR dataset, where se-
quences of the target samples with different orders and
batchsizes are adopted to measure the performance of
AdaGPAR. The superior performance demonstrates the
effectiveness of AdaGPAR in improving the generalizabil-
ity of a PAR model via TTA.
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