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1 Introduction

The exponential increase in bandwidth, coverage, and
data rate demands, along with the diversification of use
cases that are planning to use cellular radio access net-
works (RANSs) to provide connectivity, has prompted the
development of the fifth-generation (5G) radio access
technology (RAT). Through the support for higher mo-
bile bandwidths complemented with low latency and
more reliable communications, the 5G RAT is expected
to address the significant increase in data rate demands
that network operators are expecting and to support the
diversification of services required by user equipment
(UE) during the coming years. Moreover, the 5G specific-
ations, starting with [1], will include other RATs in the
5G environment, such as 4G long term evolution (LTE)
and satellite access points (APs). In this system, where
the connection demand continues to increase, appropri-
ate network resources management is required since an
optimal allocation of those resources will guarantee bet-
ter performances and will help to ensure user require-
ments in terms of quality of experience (QoE) without
overloading the network.

In this paper, a network selection technique relying on
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Markov decision processes (MDPs) and deep-Q-network
(DQN) algorithm has been studied. A centralized con-
troller will take care of allocating requests in the best way
coming from UE analyzing the network state in terms of
APs load and UE perceived transmission power. The goal
of this study is to show the effectiveness of the proposed
deep reinforcement learning approach by simulations with
a realistic multi-RAT (5G/4G/Satellite) network scen-
ario. Moreover, several classes of user requests have been
modeled in order to represent different connection ser-
vice requirements in terms of downlink bitrate, quality of
service (QoS) requirements, and QoE profiles.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the state of the art and
the main contributions of the paper. In Section 3, a
sketch of the control algorithm is presented, while in Sec-
tion 4, some preliminaries on MDPs and DQN are intro-
duced. In Section 5, the problem modelling is discussed.
Section 6 reports the simulation results and the valida-
tion of the proposed algorithm. Finally, Section 7 draws
the conclusions and highlights future works.

2 State of the art, innovations, and
limitations of the proposed approach

Network selection plays a fundamental role in provid-
ing stable connections with an adequate level of QoS.
Hence, network operators and providers commonly ex-
ploit several advanced techniques to select the best AP to
allocate new connections. Among the various techniques
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proposed in the literature, multiple attribute decision
making (MADM) proved to be one of the most flexible
solutions to capture user preferences and QoE-related as-
pects in the decision processl3 7. In MADM solutions, the
information characterizing the decision-making is made
by the so-called attribute values and attribute weights:
The first ones describe characteristics, qualities, and per-
formances of different alternatives, whereas the latter
ones are used to measure the relevance of attributes.

By modeling the network selection problem as an
MADM, it is then possible to decide the trade-off among
service QoS requirements, user preferences, and overall
network congestion.

A similar approach is followed in the present work, in
which a different QoE profile is associated with the vari-
ous connections, depending on its specific service charac-
teristics.

Among other solutions, we mention fuzzy logic ap-
proaches®11, a methodology that allows fast decision
making, but relies heavily on the operator's knowledge
and best practices, and game theory/12-16],

In game theory based approaches, the problem is mod-
elled as a set of players/agents coupled with a set of net-
work states and possible agent actions, commonly utiliz-
ing the MDP framework(”l. The main idea behind this
method is that the player’s actions are influenced by the
choices and actions of the other players. The interaction
among the players can either be adversarial, i.e., each
agent tries to maximize its performance, or cooperative,
when agents share a common objective.

The approaches mentioned so far are typically em-
ployed in scenarios in which the controller is provided
with a model of the network and user behavior, such as a
statistical distribution of the incoming connection re-
quests and QoE profiles, like in [18, 19], where the au-
thors studied how to maximize QoE/QoS for specific ser-
vices (e.g., video streaming applications). On the con-
trary, this work employs reinforcement learning (RL)[7,
a model-free control methodology that allows the net-
work controller to automatically acquire the knowledge
on the system by interacting with it and experiencing its
response to different control policies.

RL has been extensively applied in the network con-
trol domain(2°-25] and has become particularly appealing
over the last few years due to the innovations bought by
its deep learning based variant, namely deep reinforce-
ment learning (DeepRL)Z, that allowed RL-based con-
trollers to address previously challenging problems due to
their complexity and high dimensionality26l. Deep RL has
also been used for network selection and radio resource
assignment, respectively2l: 27, This paper differs from
these two works because it aims at maximizing the user’s
perceived QoE in a multi-RAT environment, where mul-
tiple radio access technologies are available at the same
time. For multi-RAT network control, deep learning ap-
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proaches (e.g., using long short-term memory (LSTM))
have been used in [28], which focuses on the cloud-edge
computation offloading in satellite-UAV-served 6G net-
works.

The main contributions of this work are:

1) The design of a two-step network control al-
gorithm based on deep reinforcement learning for the
problem of network selection and optimal resource man-
agement in the heterogeneous 5G networks setting also
envisaging the presence of satellite communication sys-
tems.

2) The inclusion in such a control framework of QoE
maximization by considering three different service types
with different QoS-QoE relations.

3) The development of an open-source network simu-
lator(29 able to model several different radio access tech-
nologies, including satellite systems, in terms of network
resource usage.

3 Sketch of the control algorithm

The algorithm designed in this work is a 2-step pro-
cess: First, the controller that governs the RAN receives a
connection request and determines which available AP it
should be allocated. The AP reserves the allocation of the
network resources needed to satisfy the connection min-
imum QoS requirements to guarantee service provision.
Then, the distributed controllers that oversee the various
APs distribute the remaining network resources to the
connections they sustain to improve the QoE of their
users. Fig.1 reports a functional diagram of the proposed
control scheme, highlighting the flowchart of the al-
gorithm and the related data flow.

The first part of the proposed control algorithm will
be based on a deep reinforcement learning agent, where-
as the network resource allocation will distribute the
available resources over the various connections accord-
ing to their priority.

Section 4 provides the reader with the necessary back-
ground information on MDP and DeepRL.

4 Markov decision process, Q-learning,
and deep-Q-network

An MDP is defined as the tuple {S,A,T,R,%,~v},
where S and A are the (continuous or discrete) finite
state and action set, respectively, T'is the transition prob-
ability function T : S x A x S — [0, 1], with T'(s,a,s’) de-
noting the probability that the next state is s’ when the
current state is s and the chosen action is a, and with
Yoees T(s,a, s') =1, R is the one-step reward function
R:SxAxS— R, Y is the in initial state distribution,
and 7 € (0,1) is the discount factor that weights future
rewards against immediate ones. The set of actions might
be state-dependent as not all the actions might be avail-
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Fig. 1 Flow-chart of the control algorithm
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able at each state, the set of actions available at a given
state s € S will be denoted by A (s) C A.
A deterministic policy 7w : S — A selects one action for

each state. Let IT be the set of feasible policies m such
that 7 (s) € A(s) for all s € S. The expected discounted
reward obtained by starting from state s and following
policy 7 thereafter is represented by the state-value func-
tion, defined as

Vr(s) = Ex (Z ’th(st,at,stH) |so = 5) (1)

t

where E, is the expected value under policy 7 and s,
and a; represents the state and action at time ¢.
Similarly, the state-action-value function

Qﬂ' (87 a‘) = ET" (Z’th (8t7ai7 St+1) |80 = S,a0 = a‘)
(2)

represents the expected discounted reward obtained by
following the policy m when starting from state s and
taking action a € A (s).

Solving the MDP means to find the optimal policy 7*
that maximizes the expected cumulative discounted re-
ward, ie., 7 =argmax_.;Vx (s). Dynamic program-
ming approaches!7l can be used to determine exactly 7*.
However, they typically require the complete knowledge
of the MDP dynamics — in particular of T"and R — and
their computing time exponentially increases with the di-
mensions of state and action sets.

Conversely, RL algorithms, such as Q-learning, aim to
obtain an estimate of the optimal state-action-value func-

tion Q-+ based on the experience the controller gathers
by interacting with the environment.
The standard update rule for Q-learning is

Q (st,at) = (1 —ar) Q (se,a1) +
Oét(m +v max Q(5t+17a)) (3)

aGA(st+1

where 1 = R(st,at,5t+1) is the measured reward
obtained at time ¢ and a; > 0 is the learning rate, which,
in order to assure convergence, is subject to the
conditions 3°5° ;= 0o and 350, af < oo

The balancing between exploration and exploitation is
controlled by the parameter ¢; € [0, 1] in the so-called e-
greedy policies: At any time t, the agent chooses a ran-
dom action with probability €, whereas it chooses the ac-
tion that maximizes the state-action-value function (i.e.,
argmax,c 4(;)Q(s; a)) with probability (1 — e¢).

It is worth noting that in standard RL approaches,
the @ function is updated only for the visited state-ac-
tion pairs. Thus, in order to have a complete estimation
of the optimal ) function, it is needed to visit at least
once every state-action pair. This implies that the state
space S and the action space A must be finite and dis-
crete, and if their dimensions increase, RL algorithms also
incur the so-called curse of dimensionality.

To address these issues, the DQN algorithm was pro-
posed in [2] as a deep learning solution for function ap-
proximation-based Q-learningl!”. DQN approximates the
Q@ function by means of a deep neural network able to ap-
proximate high-dimensional functions with a low-dimen-
sional representation. The training process for the neural
network is detailed in [2], and despite having included
some technical solutions to address the neural network
limitations, such as the target network and memory buf-
fers, conceptually it remains the same as in the standard
Q-learning, with (3) replaced by the neural network
training process and in particular by the weight updates.

The main advantage of using DQN is its ability to
cope with continuous state spaces, and it proved capable
of solving complex problems, such as playing video
games. Note that DQN still considers discrete action sets,
actor-critic solutions such as the deterministic deep policy
gradient (DDPG) should be used when dealing with con-
tinuous actions.

5 Problem modelling

This section presents the modelling of the network se-
lection problem as an MDP. In particular, Sections
5.1-5.3 formulate the sets and functions required for the
MDP formalism, while Sections 5.4 and 5.5 detail the
physical processes that allow the conversion of network
resources into bitrate provision.

Let I be the set of UEs connected within a RAN con-
stituted by a set P of APs. Each UE ¢ € I is connected to
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an AP p € P of the RAN, characterized by a certain
amount W), of physical resource blocks (PRBs) available.
In addition, let P* C P be the set of APs available at UE
i, depending on its position and antennas. Moreover, let
K be the set of different service types considered, each
one characterized by a different minimum bitrate
By, k € K. Finally, let np, be the number of requests of
type k allocated to an AP p.

Three different types of services are considered here,
as in [30], namely: elastic, non-elastic, and multi-codec,
each characterized by a different QoE profile.

Let bf,k be the bitrate allocated on AP p for the ser-
vice k requested by the UE i. We can model the three
QoE profiles as the functions r;k ( fak) depicted in Figs. 2—4.
In particular:

1) Elastic services have a linear QoE behavior with re-
spect to the allocated bitrate, starting from a minimum
level bi up to a maximum bitrate b2, where the perceived
quality is saturated, as depicted in Fig.2. This service
captures applications such as web surfing and file down-
loading.

2) Non-elastic services have a threshold-like behavior
with respect to the allocated bitrate. Thus, if the bitrate
is less than b, the perceived quality is 0; otherwise it is
maximal, as depicted in Fig.3. This service type repres-
ents well real-time applications with guaranteed bitrate
requirements.

3) Multi-codec services have a stair-like QoE profile,
as the perceived quality has different thresholds corres-
ponding to the utilized codec, depending on the amount
of bitrate allocated b}, b7, b3, as reported in Fig.4. This
service type represents multi-codec video and audio
streaming.

The proposed modelling of the services is compliant
with the 5G standards, as the so-called QoS-flows that
constitute the various connections can be associated with
one of the three service types introduced above depend-
ing on their QoS requirements and characteristics.

5.1 State space definition

As already introduced, each AP is characterized by
the number of its physical resources available for alloca-
tion, denoted as Wy, p € P.

To allow the controller to take an optimal decision on
the allocation of a new incoming connection request from
a given UE, the state of the network should contain in-
formation regarding: 1) the congestion level of the physic-
al resources over the various APs; 2) the coverage qual-
ity that the APs provide to the UE; 3) the service class,
to infer its associated QoE profile, and its bitrate require-
ments.

In this sense, the minimum quantity of physical re-
sources that need to be allocated to sustain a single QoS-
flow i of type k on a given access point p is denoted as
w:,k, with ¢ € Ik, where Ip; is defined as the set of QoS-
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Fig.3 QOoE profile of non-elastic services (k=2)

Tpk (W,;k)

Wk

] 2 3
0 Wi Wi Wy

Fig. 4 QoE profile of multi-coded services (k=3)

flows of type k related to AP p. Note that, referring to
Fig.2—-4, this quantity represents the number of re-
sources needed to provide the UE with a connection with
an associated bitrate by,

Let 7, (t) denote the number of resources allocated at
time ¢ to sustain the allocated services (i.e., the number
of physical resources required to support the on-going

QoS-flows at their minimum bitrate level). By definition,
)= > wa(t), peP (4)
kEK i€l

Let I, (t) be the load level of an AP p, defined as the

allocated physical resources over the total available ones:
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_ ()

Ly (t)

Given a UE i € I requesting a service of type k € K,
the state space is then given by the following three
quantities:

1) The load level related to each AP p € P;

2) The reference signals received power (RSRP) value
Pi.p for each AP p, measured by the UE itself;

3) The minimum amount of bitrate required for the
requested service class By, (b, in Fig. 2—4).

The state set can then be defined as

S = {S - {(lp)pEP’ (,P@P)iel, peP’ (Bk)keK}}' (6)

The resulting state s € S is a vector with 2 |P| + 1 ele-
ments. With little abuse of notation, we will denote by
Iy (s),Pip(s), and By (s) as the load level of AP p, the
RSRP value, and the minimum required amount of
bitrate in state s, respectively.

5.2 Action space definition

When a new connection request arrives to the net-
work controller, there are two possible outcomes: 1) The
controller accepts the request and allocate it to (exactly)
one AP p. 2) The connection is rejected as there are no
APs that can handle it due to insufficient resources. The
RAN controller is then required to act as an advanced
connection and admission controller (CAC).

Now we define the action set similarly to [30]. Let 4,
be a vector with 2|P|+ 1 values, i.e., the same dimen-
sion of the state vector s € S, where all the values are
zeros, but the element associated with the AP p. The
single non-zero element in J, represents the extra load
that would be added to access point p in case the new
connection request is accepted. It follows that, in each
state s, a request service may be allocated on AP p if and
only if s+, € S, i.e, by allocating the new request to
the AP p, the newly generated state still belongs to S.

The action set available in a state s €S is then
defined as

A(s) =

{(C17<27"'7€P|) ) ZP€J:17CJG{O71}7VJ}UO

Jjel,

(7)
where 0 is a P-vector of zeroes, and the action is a vector
whose only non-zero element is equal to one and indicates
which AP has been selected for the allocation. The special
case in which a; = 0 represents a condition in which the
connection request must be rejected due to a lack of
network resources, as no AP can allocate the incoming
request assuring its minimum required bitrate.

In the simulation in Section 6, we will assume that re-
quests of the type of service k € K for each UE arrive ac-

cording to a Poisson distribution in time with mean value
vi and that their termination rates follow an exponential
distribution with mean termination frequency py.

5.3 Reward function definition

In the presented definition of the states and actions, it
was assumed that the network controller only allocates
the network resources needed to satisfy the minimum
amount of bitrate required by the various connections. As
introduced in Section 3, the network control algorithm
follows a two-step procedure: Firstly, it selects which AP
will serve the incoming connection request. Then, each
AP distributes its remaining resources 1711, (s) over its con-
nections, according to some prioritization order that may
take into account the user tariff or operator preferences.

In our simulations, the APs will firstly distribute their
available resources uniformly to the multi-codec services
so that each connection receives a bitrate up to b3. After-
ward, the remaining resources are uniformly distributed
to the elastic services up to a bitrate of bl. Non-elastic
services, due to their threshold-like behavior, are always
given a bitrate of b3.

To define the reward function, we have to introduce
Spi as the amount of additional bitrate that the AP p is
able to provide to the connection ¢ using a share of its re-
maining resources. This quantity is directly linked to the
QoE profile associated to the connection. As it is possible
to notice from Figs.2-4, the QoE obtained by the alloca-
tion depends on the minimum bitrate allocated by the
DQN algorithm b}, + Spi, i.e., the total bitrate available
to the service 7 of class k.

The reward function shall then capture three cases:

1) The connection request is rejected (i.e., no AP al-
locates the connection).

2) The connection is allocated on an AP with a low
resource usage.

3) The connection is allocated on an AP that is
already providing several other connections.

To capture those three cases, the reward
r+(st, at, St+1) obtained by the controller when allocating
a connection ¢ of class k of AP p can be defined as

Tt (Shat;sH—l) =
- <o,
Tpk (bllc + Spl) )
rok (bk + Spi) —1°,

if at = 0
ifl,(t+1) <05 (8)
if I, (t+1) > 0.5

The negative reward —r° represents a penalty given to
the agent if the allocation is rejected to capture the cost
incurred by the network operator in failing to provide a
connection. The term 7,k (b,lC + Spi) is a positive reward,
shaped depending on k as in Fig.2—-4, that captures the

sat

QoE of the new user, and the term —r®*" is a negative re-

ward subtracted from 7, (bi + Spi) in case the new alloc-
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ation is destined to an AP whose saturation level is high-
er than the desired threshold (50% in our case).

The long-term maximization of this reward allows the
network controller to maximize the overall QoE of its
users while keeping the connection rejection rate minim-
ized.

5.4 5G NR and 4G LTE resource alloca-
tion description

In order to relate the physical resources that appear in
the state definition with the transmission bitrate needed
by the reward function to estimate the QoE level, it is
now necessary to detail their relationships and how one
translates into the other for both terrestrial and satellite
APs.

5G new radio (NR) APs have a limited set of re-
sourcesPl, both in terms of frequency bandwidth and
time to allocate UE requests. The minimum allocation
unit for a 5G NR AP is the PRB, each composed of 12
frequency subcarriers with a 2* x15 kHz bandwidth and a
time duration of 27#x1 ms, where p € {0,1,2,3,4} is the
parameter called numerology defined by 5G NR stand-
ards. The number of PRBs available on AP p depends on
the total available bandwidth on the AP and its numero-
logy, as defined by 5G NR standards/3!l:

For 4G LTE APs, the definition of PRB still stands,
but the numerology parameter is constrained to pu = 0, so
there is no flexibility on using less/more subcarrier band-
widths and more/less time slot durations. Even if 4G
LTE will likely to be replaced by 5G NR in the next few
years, it has been considered in this work since it is cur-
rently the predominant radio access technology for mo-
bile devices, and its seamless integration in the multi-con-
nectivity framework allows for more stable and broadly
available connectivity.

The receiving power, or RSRP, P;, that appears in
the states of (6) represents the transmission power meas-
ured by the UE ¢ € I between itself, and the AP p € P is
computed as follows:

Pip="PpxGpxLyxLi, (9)

where P, is the AP's antenna power, G, is the AP’s
antenna gain, L, is the AP's feeder losses, and L; , is the
path loss between UE i and AP p.

In our simulations, the path loss L;, is computed
through the COST-HATA model®2 which is a statistical
model that considers many factors as the building dens-
ity (rural, suburban, urban), the carrier frequency used
for the communications, and the relative heights of UE
and AP.

In order to estimate the number of resource blocks to
be allocated by the AP p € P for the communication with
the UE i € I, the signal-over-interference-plus-noise-ratio
(SINR) has to be computed. The thermal noise part can
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be computed according to:

N, = ks T“"" B, O, (10)

ZTE(th,t) Zje]\i Cip (T) Njp (1)

®P(t): TX#RP

(11)

where O, (t) is the resource blocks utilization ratio
(RBUR) of AP p at time ¢, k; is the Boltzmann constant,
T is the environmental temperature, B, is the total
bandwidth for the AP p, T is the length of the moving
average, Cjp (1) is equal to 1 if UE j is connected to AP
p at time ¢ and 0 otherwise, and Nj , (¢) is the number of
PRB allocated by AP p to UE j, and #R, is the total
number of resource blocks of AP p.
The interference part is computed as follows:

Jip = Z Fop Py X O (1) (12)

p'#p

where F,, is 1 if AP p and p’ share the same carrier
frequency and 0 otherwise.

Using (10) and (12), it is possible to compute the
SINR, and so it is possible to estimate the data rate that
can be transmitted by allocating one PRB to UE i using
the Shannon formula:

Tip = 27“1073BPR310g2 (1 + SINRi,p) (13)

where Bprp is the bandwidth of a single PRB, and it can
be computed as Bprp = 12 x 2#15 kHz.

Now, given a certain bitrate request bf) from UE i, it is
possible to compute the number of resource blocks to be

. . . PRB _
allocated by AP p to satisfy the request: n,,” =

’—(b;k/ri,p)—‘-

5.5 Satellite resource allocation descrip-
tion

Contrary to ground APs, the satellite APs use time
division multiple access (TDMA) in order to serve mul-
tiple UEs at the same time. In this case, the minimum al-
location unit is a block of symbols that occupies a cer-
tain time slot in the satellite time frame.

The receiving power P;, can be still computed as (9),
but in this case, the path loss function will be the free
space path loss:

FSPL Ardip f :
LESPL — (Tp (14)
where d;, is the Euclidean distance between UE ¢ and
AP p, f is the carrier frequency used, c is the speed of
light, and F'SPL represents the free space path loss.

The thermal noise can be computed as (10), and the
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interference can be computed as (12). Using the Shannon
formula (considering that this time the bandwidth is the
total bandwidth of the satellite AP since the TDMA util-
izes all the bandwidth only for a certain amount of time),
one has that the bitrate obtainable by a single block of
symbols is

rip = bBlog, (1 + SINR; ;) (15)

where b is the ratio between the number of symbols in a
single block and the total number of symbols of the
satellite AP. The number of blocks to be allocated for a
requested bitrate bfok from UE ¢ is then computed

as 0] = (U /rip)
6 Simulation results and validation

In order to demonstrate the effectiveness of the pro-
posed approach, a simulative environment has been built
up according to the model definition previously intro-
duced.

6.1 Scenario definition

We developed a scenario consisting of four terrestrial
access points (NR1 and NR2 are 5G NR APs and the re-
maining two are 4G LTE APs) and a satellite access
point in a 2.5 x 2.5 km? area, as shown in Fig 5.

UE and access point disposition
2500 ' : ' '

2000 - .

1500

Y (m)

P

1000 ~ &

500
@ ®

0 500 1 000 1500 2000 2500
X (m)

Fig. 5 Considered network scenario

In particular, for 5G NR access points, we considered
a carrier frequency of 1.7GHz (band n66) with numero-
logy p =2, while for 4G LTE access points, we con-
sidered a carrier frequency of 800 MHz (band 20). All the
terrestrial APs have 20dB power, 16dB antenna gain,
and 3dB feeder losses. For the satellite access point, we
considered the Inmarsat implementation from Example
6.6.2 of [33]. A total of 100 UEs has been considered in
the given area. Each of them follows a Poisson distribu-
tion for requesting data with a certain service type and
for the duration of such request; the parameters for each

service type are described in Table 1. Moreover, we con-
sidered v =0.9, e =1, e-decay = 0.9995 and e-min =
0.01. As for the DQN parameters, we considered a replay
buffer of 2 000 tuples, a batch size of 64 tuples, and the
update of target network weights every 50 steps. Finally,
the DNN hidden layers have a tanh activation function,
the learning rate of the DNN is 1074, and the network
performs 4 x 10" training steps before finishing the train-
ing. The training process and its testing using the pro-
posed radio access network simulator run on an Intel
Core i7 6700HQ machine with 16 GB RAM. No dedic-
ated GPU has been used for the training process since the
small size of the processed data makes the training step
faster than copying such data from RAM to VRAM.
Most of the computation complexity is, of course, in the
training process of the four hidden layers of the DQN net-
work; once trained, DQN has O (1) computational cost to
compute the best action.

Table 1 Service type requests

Elastic Non-elastic Multi-codec
Bitrate (Mbps) 10 200 100
Arrival rate (s) 2 6 4
Dwelling time (s) 30 120 90

6.2 Simulation results

The results displayed in Figs.6—12 will focus on the
performance of the controller in terms of QoS-flows alloc-
ation and their management. In order to validate the res-
ults of the proposed DQN algorithm, a set of other ap-
proaches have been simulated. In particular, a classical,
tabular, Q-learning (QL in Figs.6-11) approach has been
simulated, together with a least loaded (LL in Figs.6-11)
approach, where a new request will be allocated to the
least loaded AP, and a Max-RSRP (MR) approach,
where a new request will be allocated to the AP with the
maximum receiving power. The Q-learning approach
shares the same MDP representation as the one presen-
ted for the DQN, except for the fact that the state-space
needed to be discretized so that the AP loads and the
RSRP values contained in the states in (6) were uni-
formly quantized into four levels.

The various controllers have been tested on the same
scenarios to obtain fair performance results. Moreover, to
ensure more balanced experiments, the results are the av-
erage between ten different scenarios, each tested by all
the different controllers. Finally, both the DQN and the
QL controllers have been trained before executing the
simulations. Several metrics are shown to understand bet-
ter the performances of the controllers with respect to
each other.

As it emerges from Fig.6, the DQN controller outper-
forms the other controllers in terms of rejection rate, even
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if both the Max-RSRP (MR) one and the Q-learning
(RL) one have similar results. This behavior is not sur-
prising since the Max-RSRP approach allocates requests
to the AP with minimum path-loss, so the number of re-
quested physical resources will be in general lower, and
the Q-learning approach has a similar behavior w.r.t. the
DQN approach, since the only difference is in its finite
state space.

45 r 40.98

20 1673 19.76 18.53

Total rejection rate (%)

DQN QL LL MR

Fig. 6 Overall rejection rates

Fig.7 reports the rejection rate of each controller di-
vided by service type. In Fig.7, we can note how all con-
trollers allocate a lower percentage of the non-elastic ser-
vice requests, whereas the LL controller shows a signific-
antly higher rejection rate for the elastic services.

77.1
70
60 47654~8 53.2 53.1
50 -

28.5

30 23 25.4 28.2
20
10 F243.6 2.1
0

Elastic Multi-codec

BDON mQL mLL = MR

Rejection rate (%)
N
(=)

Non-elastic

Fig. 7 Rejection rates divided by service type

In terms of bitrate, the DQN approach is found to be
the best one, allocating around 48 Gbit over the accepted
incoming requests.

Fig.8 details the allocated bitrate percentage with re-
spect to the total requested bitrate divided by service
type.

The result demonstrates that DQN behaves almost in
the same way as MR for what concerns the elastic ser-
vices, while it allocates about 6% more than the other ap-
proaches for what regards non-elastic traffic and about
3% for what regards the multi-codec requests.

In addition, from Fig.9, which represents the average
percentage of successful allocations in each AP on all the
requests made by the UEs, it is evident that the least-
loaded controller is the one that better balances the load
between the APs. Despite its limited performances ac-
cording to the other metrics presented, due to its defini-
tion, it allocates requests to the least used AP at the giv-
en time instant, resulting in an overall reasonable bal-
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Fig. 8 Allocated bitrate percentage divided by service type

NR1 NR2 NR3 NR4 SAT

EDON mQL " LL mMR

Average allocation rate of requests (%)

Fig.9 Load distribution among each AP

ance among all the APs.

The other controllers appear to be less balanced when
allocating resources, with one or two base stations being
exploited more than the others. In particular, the DQN
controller relies heavily on the satellite base station to al-
locate incoming requests, allocating about 30% of re-
quests to this AP. DQN is hence the only approach that
fully exploits satellite resources, as the others tend to
utilize mainly the NR base stations.

Fig.10 represents the QoE collected by each of the
controllers. The values for each controller are computed
by summing the QoE gained by each request according to
the QoE profiles defined in Section 3 and then normal-
ized on the result obtained by the DQN controller. As ex-
pected, the Q-learning controller has similar perform-
ances with respect to the DQN one, reaching the highest
QoFE level. The performance gap increases when compar-
ing a learning-based agent against the other approaches.

Finally, Fig.11 represents the QoE collected by each
controller in case the number of UEs is less than 100.
From Fig. 11, it is possible to notice, as expected, that the
DQN controller is able to achieve better performances
compared to the competitor controllers when the number
of UEs is smaller, while, if the number of UEs increases,
the network is more likely saturated, making the DQN,
Q-learning and MR approaches gain similar levels of
QoE. In fact, the rejection rates of all approaches in-
crease as the network overload increases. However, the
DQN and the Q-learning controllers continue to prefer re-
jecting non-elastic traffic in favor of multi-codec and
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Fig. 10 Cumulative QoE gained by each of the controllers with
respect to DQN controller
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Fig. 11 Cumulative QoE with different numbers of user
equipment, normalized on the corresponding DQN performance

elastic service classes. As shown in Fig.12, the cumulat-
ive QoE of the DQN approach, normalized with the QoE
of the case with 100 UEs, still increases (in a sub-linear
way) as the number of UEs increases. This is because,
even if the network is going towards saturation, the con-
troller is still able to allocate some more UEs w.r.t. the
cases with fewer UEs.

120 -
00 L 95.00 100.00

80  70.67 72.58

60
40 |+
20 |
0

25 UEs 50 UEs 75 UEs

Cumulative QoE percentage (%)

100 UEs

Fig. 12 Cumulative QoE percentage for DQN approach with
different numbers of user equipment, normalized on the DQN
performance with 100 UEs

7 Conclusions

The paper proposed a network controller based on
deep reinforcement learning to enable the integration of
satellite systems into 5G heterogeneous networks. The
proposed controller dealt with the problem of network se-
lection by formulating it as a Markov decision process
and was compared to several standard benchmark al-
gorithms. The proposed solution proved to be able to

cope with large-scale scenarios involving 100 different
UEs.

For validation purposes, the authors developed an
open-source network simulator?”) that realistically cap-
tures the network resource usage of different radio tech-
nologies, including satellite connections.

Overall, the proposed controller improved the per-
formance of the network, increasing the connection-flow
acceptance rate and providing better resource manage-
ment compared to the other methods tested.

Future works are related to the introduction of other
unmodeled complexities in the simulator, such as user
and access point mobility. Actor-critic algorithms(26l will
also be explored to enable the split of QoS-flows and
multi-connectivity, allocating a single flow over different
access points at the same time.
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