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Abstract: Realizing autonomy is a hot research topic for automatic vehicles in recent years. For a long time, most of the efforts

to this goal concentrate on understanding the scenes surrounding the ego-vehicle (autonomous vehicle itself). By completing low-

level vision tasks, such as detection, tracking and segmentation of the surrounding traffic participants, e.g., pedestrian, cyclists and

vehicles, the scenes can be interpreted. However, for an autonomous vehicle, low-level vision tasks are largely insufficient to give help

to comprehensive scene understanding. What are and how about the past, the on-going and the future of the scene participants? This

deep question actually steers the vehicles towards truly full automation, just like human beings. Based on this thoughtfulness, this

paper attempts to investigate the interpretation of traffic scene in autonomous driving from an event reasoning view. To reach this

goal, we study the most relevant literatures and the state-of-the-arts on scene representation, event detection and intention prediction

in autonomous driving. In addition, we also discuss the open challenges and problems in this field and endeavor to provide possible

solutions.
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1 Introduction

• Automation is one of the hottest topics in transporta-

tion research and could yield completely driverless cars

in less than a decade. — Nature in 2015[1].

Can the driverless cars be completely yielded in less than

a decade? Manifestly, it is still decades away based on the

observations of current progresses and remaining challenges

in autonomous vehicles. So far, no one is close to develop

a fully autonomous vehicle. The fleet testing by Uber and

Google operates under tightly controlled conditions[2].

The reasons are from four aspects: 1) The exist-

ing methods of environment perception, e.g., detection[3],

tracking[4, 5] and segmentation[6] of participants in traf-

fic scenes, still produce inevitable errors in real environ-

ment; 2) The driving environment is rather complex, unpre-

dictable, dynamic, and uncertain; 3) Deep traffic scene un-

derstanding, such as understanding the geometry/topology

structure of scene, and spatio-temporal evolution of partic-

ipants (pedestrian, vehicle, etc.), is studied far from suffi-

cient, whose ultimate goal is to semantically reasoning the

scene evolvement so as to provide clues for behavior deci-
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sion and autonomous vehicle control. Actually, it is dif-

ficult to study because these elements are implicitly con-

tained in the driving environment and cannot be directly

observed; 4) The deployment of autonomous vehicle faces

social dilemma and involves moral issue[7]. Complementary

to our survey, Janai et al.[8] exhaustively reviewed the traf-

fic participant recognition, detection and tracking, scene

reconstruction, motion estimation, semantic segmentation,

and many other vision-based tasks. Xue et al.[9] made an

overview on autonomous vehicle systems from the perspec-

tives of self-localization and multi-sensor fusion for obstacle

detection and tracking, and emphasized vision-centered fu-

sion of multiple sensors. Zhu et al.[10] studied the latest

progresses on lane detection, traffic sign/light recognition

in the perception of intelligent vehicles. These surveys, to

a great extent, give a comprehensive and detailed investi-

gation concerning with the first reason mentioned above.

In this paper, we focus on the third aspect: survey on the

deep understanding of traffic scene for autonomous vehicles.

This paper aims to explore the evolution of traffic scene

from an event reasoning view. That is because event can

reflect the dynamic evolution process of scene with tractable

reasoning strategy[11]. In order to provide a clear and logi-

cal investigation, this paper reasons the event from its rep-

resentation, detection, as well as prediction stages. In the

representation stage, the main goal is to obtain high-level

clues for the following stages. In this stage, we expound

the saliency, the contextual layout, and the topology rules

for autonomous driving. As for the detection stage, we

review the event detection with respect to different partic-

ipants, such as pedestrian and vehicles. For the prediction
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stage, this paper elaborates the intention of autonomous

vehicles with regard to the expected time span for future

prediction. We classify the prediction of intention as long-

term intention prediction and short-term prediction. Fig. 1

demonstrates the surveying flowchart in this paper. At dis-

tinct stages, we discuss open problems and challenges, and

endeavour to provide possible solutions.

Fig. 1 The scene understanding flowchart by event reasoning

framework for autonomous driving

Actually, beyond those stages, some end-to-end ap-

proaches emerge recently for scene understanding facing

autonomous driving[12−14]. They rely on a large-scale data-

driven mechanism, and formulate the scene to decide with

deep layers or recursive perception, such as fast recurrent

fully convolutional networks (FCN) for direct perception in

autonomous driving[12] and FCN-LSTM[13] for a future mo-

tion action feasibility distribution. We specially take a sec-

tion to present this category. We hope that our survey can

sweep away some entry barriers of deep scene understanding

for autonomous driving, and draw forth meaningful insights

and solutions for this field.

1.1 Autonomy pursuit in driving

Developing autonomous systems aim to assist humans

in handing everyday tasks. Autonomous driving system, a

system for closely related to humans′ everyday trips, has

become people′s one of the most typical pursuits. It can

free hands from the steering wheel, and spare time for tack-

ling many other things. Meanwhile, the equipped sensors of

autonomous vehicle can also recognize the surrounding con-

dition immediately and ensure safe driving, thus decreasing

traffic accidents. Encouraged by those merits, researchers

are diligently pursuing autonomous driving all the time.

There are two kinds of driving force in the development

of autonomous driving. One is the projects launched and

challenges posed by different governments, research insti-

tutes and vehicle manufacturers. The other we want to

emphasize is the publicly available benchmarks.

Projects and launched challenges. Since 1986, Eu-

rope started an intelligent transportation system project,

named as PROMETHEUS, involving more than 13 ve-

hicle manufacturers and research institutions around 19

countries. Thorpe et al.[15] in Carnegie Mellon University

launched the first autonomous driving project in the United

States. This project made breakthrough in 1995 that au-

tonomously drove a car from Pittsburgh, Pennsylvania to

San Diego, California. Supported by many related stud-

ies, the US government established the National Automated

Highway System Consortium (NAHSC) in 1995. Motivated

by these projects, highway scenarios has been intensively

studied for a long time, while urban scene remained as an

uncultivated area. Actually, urban scene is closely related

to human′s daily lives. At that time, a famous “DARPA

Grand Challenge (DUC)” launched by Defense Advanced

Research Projects Agency (DARPA) largely accelerated

the progress of autonomous vehicle. Among them, “Ur-

ban Challenge”[16] , the third challenge launched by DARPA

(others had been held in 2004 and 2005 respectively, aiming

to test the self-driving performance in the Mojave Desert of

the United States[17, 18], took place on November 3, 2007 at

the now-closed George Air Force Base in Victorville, Cali-

fornia. Rules included obeying all traffic regulations while

negotiating with other vehicles and obstacles and merg-

ing into traffic. There were 4 teams completed the route

within 6 hours. In 2009, National Natural Science Foun-

dation of China launched the China Intelligent Vehicle Fu-

ture Challenge (iVFC). Up to now, the ninth contest was

held in November 2017. Google started their self-driving

car project in 2009, and completed over 5 million miles

driving test until March 20181. In 2016, the project was

evolved into an independent self-driving technology com-

pany Waymo. Tesla Autopilot2, by equipping cameras,

twelve ultrasonic sensors and a forward-facing radar, all the

vehicles can have the self-driving ability since October 2016.

As a matter of fact, more and more vehicle manufacturers,

such as Audi, BMW, Benz, have begin their projects to

develop their self-driving vehicles.

Benchmarks. In 2012, Geiger et al.[19] introduced the

KITTI vision benchmark, which contained six different ur-

ban scenes, and had 156 video sequences with time span

from 2 minutes to 8 minutes. Within this benchmark,

they launched several typical vision tasks, such as pedes-

trian/vehicle detection, optical flow, stereo flow, road detec-

tion, lane detection, etc. The benchmark was collected by

an ego-vehicle equipped with color and gray cameras, and

Velodyne 3D laser scanner and high-precision GPS/IMU

inertial navigation systems. At the same time, Cambridge

University released CamVid dataset[20], which provided a

semantic segmentation evaluation benchmark containing

only four video sequences on urban scene. Another pop-

ular benchmark is the Cityscapes dataset[21] released in

2016. Urban scene was collected in 50 cities, and have 5 000

fine-annotated images and 20 000 coarse-annotated images.

Cityscapes has become the most challenging dataset for

semantic segmentation task. Actually, annotation is time

and labor consuming. Based on that, Gaidon et al.[22] con-

structed a large-scale KITTI-like virtual dataset3 by com-

puter graphic technology. The benefit of virtual dataset

1https://www.theverge.com/2018/2/28/17058030/waymo-self-
driving-car-360-degree-video

2https://www.tesla.com/autopilot
3http://www.europe.naverlabs.com/Research/Computer-

Vision/Proxy-Virtual-Worlds
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is that it can generate every wanted task, for those that

are encountered rarely. However, these benchmarks have

a short time span, which is difficult to the diversity and

complexity of scenes. To solve this problem, Maddern et

al.[23] constructed RobotCar dataset4 by travesing 1 000 km

in central Oxford in the UK for one year. Images, Lidar

and GPS data were collected. This dataset presents larger

variations in scene appearance, illumination, and weather.

The downside of RobotCar is that it does not provide suffi-

cient annotation. Besides various kinds of sensor equipment

systems, some researchers focus on a full view calibration

by equipping multiple cameras to cover different perception

view around the ego-vehicle, such as LISA-Trajectory[24]

and PKU-POSS dataset[25]. Fig. 2 gives a glance for the

KITTI and Cityscapes dataset.

Fig. 2 A glance at the KITTI and Cityscapes dataset. The

left part is the KITTI data demonstration and relating sensors

(adapted from [19]), and the right part is the fine-annotated city

scene of a frame (adapted from [21]).

Most datasets focus on the development of algorithm

comparison for autonomous driving with respect to differ-

ent vision based tasks, and the ranking of each task changes

more and more frequently. Actually, it is the same for the

general computer vision domain, such as PASCAL VOC[26],

ImageNet challenge[27], Middlebury for stereo and optical

flow5 , MOT for tracking[28], ActivityNet[29], etc. As several

decades passed, there is a consensus that a more diverse and

challenging dataset would make the designed method be

better and better. However, is it true? Is the best method

4http://robotcar-dataset.robots.ox.ac.uk/
5http://vision.middlebury.edu/stereo/

in the comparison list also the best for practical applica-

tion? Actually, autonomous driving should not only focus

on individual task. When driving, the surrounding scene

may produce various tasks simultaneously, such as detec-

tion, tracking, segmentation, behavior judgement, event de-

tection, intention prediction, etc. A successful autonomous

driving system must realize long-term driving under vari-

ous environments. Even so, autonomous driving still have a

long and zigzag way to go because of the ever changing traf-

fic scenes. There is least one thing for sure that the above

two of driving forces for autonomous driving will coexist in

the future.

The rest of this paper is organized as follows. Section 2

presents the representation of scene for following event rea-

soning. Section 3 provides the review for the pedestrian

and vehicle event detection, followed by the intention pre-

diction overview in Section 4. In Section 5, we also present

the end-to-end frameworks for the direct reasoning by deep

learning architectures. Then, we elaborate the evaluation

metrics and relating datasets for the event reasoning in Sec-

tion 6. This paper is finally concluded in Section 7.

2 Scene representation for event rea-

soning in autonomous driving

Defining event is a difficult problem in cognition science.

What kind of scene variation should be taken as an event?

Why does the event occur? We attempt to answer these

questions from scene representation. Specifically, this pa-

per focuses on the aspects of traffic saliency, content lay-

out and topology rules for self-driving. Reasons are that:

1) Traffic saliency formulates where the scene should or may

be looked when driving in different traffic situations[30]. An

event always influences and changes the attention of human

drivers. In other words, traffic saliency can provide locally

instantaneous clue for event reasoning. 2) Context layout

specifies the relationship of traffic elements of scenes, such

as geometrical layout of road scene, providing prior knowl-

edge for the event definition. That is to say that context

layout supplies globally spatial. 3) Topology rules[31] intu-

itively denote the operational logic of traffic flow and the

reasonable running rules with a relatively long time accu-

mulation. Bluntly speaking, topology rules generate the

spatial-temporally logical clue for event reasoning.

2.1 Traffic saliency for driving

Saliency mechanism, as a critical region extraction and

information simplification technology, has been widely used

for attractive region selection in images. Over the past few

decades, saliency has been generally formulated as bottom-

up and top-down modes. Bottom-up modes[32−34] are fast,

data-driven, pre-attentive and task-independent. Top-down

approaches[35−38] often entail supervised learning with pre-

collected task labels by a large set of training examples, and

are task-oriented and vary in different environments.
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Driving has clear destination and path, and is manifestly

the task-driven case. This derives a question: Where should

we look when driving in different environments? For seek-

ing the answer, most of the works focus on detecting the

obvious traffic sign or light[39−41] . For example, Wang et

al.[41] proposed a fast traffic sign detection method based

on a cascade method with saliency test and neighboring

scale awareness. The saliency was utilized to prune the ob-

tained target window by previous cascade procedure. Kim

et al.[42] utilized top-down importance information, such

as pedestrian and traffic light detection results, to arouse

drivers′ attentions. John et al.[43] generated a saliency map

by a convolutional neural network in offline mode, which

was used to extract the region of interest for traffic light

detection in images. Kuang et al.[44] established a Bayes-

based saliency proposal applied to nighttime scenes. They

exploited the edge prior, luminance, local contrast and ve-

hicle taillight map to infer the probability of belongingness

of a vehicle to a bounding box.

The aforementioned utilizations of saliency mainly focus

on one kind of task in driving, i.e., to detect the impor-

tant traffic sign/light or participants. However, for a prac-

tical driving, the tasks always switch frequently, and the

saliency assumption may be compromised in many scene

conditions[45] stated by Luc Van Gool, the head of the com-

puter vision lab in ETH Zürich. Actually, we need to seek

the saliency mechanism in different driving environments.

From the view of human vision, a recommendable work con-

tributed by Deng et al.[30] exploited the top-down saliency

detection in a general driving environment. They collected

the drivers′ attentions data by an eye tracker (Eyelink2000,

SR Research Ltd.). They restricted the participants′ head

movements by a forehead and chin rest. Then the pupil of

the left eye was tracked at a sample rate of 1 000 Hz and

a spatial resolution of approximately 0.1◦. By their efforts,

they found that a driver′s attention mostly concentrates on

the end of the road in front of the vehicle, and they treated

the road′s vanishing point6 as the salient regions of inter-

est. When we look back to the data of [30], we find that

the collected scenes are with quite few traffic participants

and under simple traffic scenes. It is largely insufficient to

imitate the saliency mechanism of humans driving. Alletto

et al.[46] established a DR(eye)VE video dataset7, devot-

ing to attention formulation for autonomous and assisted

driving. This dataset is composed of more than 500 000

frames, containing drivers′ gaze fixations and their tempo-

ral integration which provides task-specific saliency maps.

An exemplar of traffic saliency stated in [30] and [46] are

shown in Fig. 3, respectively. The DR(eye)VE dataset was

firstly used in [47] by Palazzi et al., and they concluded that

the gazing frequency and gazing time were different, which

correspond to distinct semantic categories. Fig. 4 offers a

demonstration.

Fig. 3 An exemplar of demonstrating traffic saliency. (a) is adapted from [30], which represents an image-based traffic saliency. (b) is

adapted from [46], which specifies a video-based traffic saliency.

Fig. 4 Proportion of semantic categories hit by gazing maps with an increased value for thresholding. The descending trend means a

circumstantial gaze, and increasing trend indicates a focus of gaze. This figure is adapted from [47].

6In graphical perspective, a vanishing point is an abstract point on the image plane where 2D projections (or drawings) of a set of parallel
lines in 3D space appear to converge. In road plane, vanishing point commonly represents the converging point at the end of the road.

7http://imagelab.ing.unimore.it/dreyeve
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In fact, traffic saliency can formulate intuitional represen-

tation for different traffic scenes, where different situations

have distinct landmarks and task demands. Meanwhile,

task-driven saliency sometimes may conflict with bottom-

up saliency when making a driving decision, such as the

road place in scenic areas. Therefore, to pursue a promising

traffic saliency representation, we need to explore a mech-

anism so as to collaborate the task-driven demand and the

bottom-up stimulation.

2.2 Context layout for driving

Context layout aims to represent spatially geometrical

relationships[48] among different traffic elements with cer-

tain semantic label. It is different from the semantic seg-

mentation frameworks[49, 50]. Context layout not only con-

tains the static components of traffic scene (Typical tech-

nique for this aspect is simultaneous localization and map-

ping (SLAM)[51, 52]), such as road, the type of traffic lanes,

traffic direction, and participant orientation, but also con-

sists of many kinds of dynamic elements, e.g., motion corre-

lation of participants. The study[8,53] has given a detailed

review on semantic segmentation. Here we only review the

literatures which take the traffic geometry inferring into

consideration.

In traffic geometry inferring, vanishing point detection

is a typical task for autonomous driving. Vanishing point

represents the end of the road which provides a guidance

for automatic driving. A milestone work[54], proposed by

Kong et al., firstly extracted the road region and the road

boundaries. Then they took the junction point of the road

boundaries as the vanishing point. Later, they found that

it was difficult to obtain the road region under unstruc-

tured road scene. They creatively analyzed the road texture

direction[55] by a Gaussian filter. The intersection location

of the extending line of the texture direction was denoted as

the road vanishing point. Inspired by that, Shi et al.[56] pro-

posed a fast and robust vanishing point detection method

for unstructured road scene. They boosted the robustness

of the vanishing points by a temporal tracking.

Only the vanishing point obviously cannot sufficiently

represent the context layout of driving scene. More and

more studies want to give an overall representation of con-

text layout information. Alvarez et al.[57] attempted to ex-

tract the 3D contextual information of roads. They real-

ized it by horizonal lines, vanishing points, 3D scene lay-

out and 3D road geometry, and combined these clues by a

Bayesian framework. Casapietra et al.[58] proposed a grid-

based road representation, which worked on a road terrain

representation and assigned a lane and a driving direction

to each patch of road. Seff and Xiao[59] firstly collected a

large-scale dataset by gathering one million Google Street

View and label the road layout by OpenStreetMap8. Then

they trained a road layout classification model by deep con-

volutional networks. Liu et al.[60] represented the street

8www.openstreetmap.org

scene with 4-layer interpretation that compactly contains

the ground, the participants, the building and the sky. A

representative institute for context layout inferring is the

Department of Measurement and Control in Karlsruhe In-

stitute of Technology (KIT). They are also the founder of

the KITTI dataset. The tracklet of participants, vanishing

points, scene layout and traffic lane are combined to con-

struct the directional graphic model and to generate the

context layout information by Bayesian inference[61].

2.3 Topology rules for driving

Studying the topology rules is a high-level task in scene

understanding. Topology studying specifically is the his-

tory of a region as indicated by its topography, referring

to the definition in the Dictionary of Merriam-Webster. It

is mathematically concerned with the properties of space

that are preserved under continuous deformations, such as

stretching, crumpling and bending, but not tearing or glu-

ing. Accordingly, topology rules for driving are the histori-

cally collected road type by traffic state modeling. It serves

as an apparent guidance and reminder for safe driving. On

one hand, it can be obtained by pre-collected GPS infor-

mation or digital earth maps. On the other hand, it can be

learned by the visual observation of traffic states over a pe-

riod of time. In this paper, we focus on the latter category.

The difficulty of learning the topology rules is to rule out

the noisy observations and overcome the on-board camera

motion when driving. In this point, the spatial 3D scene lay-

out and tracklets are commonly adopted. For example, Ess

et al.[62] aimed to obtain the road type (straight, left/right

curve, crossing, etc.), as well as the simultaneously encoun-

tered participants. They firstly represented the road scene

with a meta feature representation, specifying 12 compo-

nents, such as pedestrian, vehicle, zebra line, etc. Then

they fed these features into an Adaboost classifier to clas-

sify 13 kinds of road types. This method was a single image

based approach, and the temporal correlation of scene was

not considered efficiently. Later, Geiger et al.[31] proposed

a principled generative model to estimate the varying road

topology of intersections as well as the 3D content of the

scene. They fused the dynamic 3D scene flow[63] with static

occupancy grids[64] to construct the interring feature. From

the perspective of birds′ eyes, they modeled a directional

graphic model and inferred it by a Bayesian estimation. In-

spired by this work, Zhang et al.[65] aimed to design a finite

traffic pattern with strong ability of topology representa-

tion and focused on a high-order dependence modeling for

participants. By that, they can detect the illegal traffic situ-

ation. Specifically, they adopted the tracklets instead of 3D

scene flow, so as to provide a convenience for dependence

modeling of participants. This work was further extended

in [61]. Fig. 5 shows the utilized topology rules in the re-

lated works. Motivated by this kind of topology rules, Chen

et al.[66] proposed a direct perception approach, which was

modeled by directly perceiving the angle of the car against

the road, the distance to the lane markings and the distance
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to cars in the current and adjacent lanes. These clues were

learned with a ConvNet to construct an affordance map.

Fig. 5 The utilized topology rules in (a)[61] and (b)[62]

2.4 Discussion

Traffic saliency, context layout and topology rules pro-

vide a scene representation with different time spans, space

spans and interpretational levels. They, to some extent, set

a constraint for autonomous driving and assist in judging

the occurrence of driving event. In fact, the scene represen-

tation has large impact on driving. We all know that the

experience of drivers plays an important role in completing

current driving task in different environments. Based on the

study[67], drivers with richer driving experience can handle

sudden and accidental events. The reasons are two-fold:

1) Experienced drivers have better driving consciousness;

2) They are familiar with the scene encountered. In other

words, the experienced drivers stored the scene representa-

tion and transferred it for current decisions. Therefore, for

autonomous driving, how to model the scene representation

better and how to transfer the modeled representations to

current scene understanding are two problems to be solved.

Geiger et al.[31, 61] have made some attempts. However, it

is largely insufficient for real driving situations. In addi-

tion, transfer learning[68] recently attracted the attention

in many computer vision tasks. For the scene representa-

tion, structure information should be focused when using

transfer learning because of the representation type of con-

text layout and topology rules. Therefore, tree structure

based transfer learning[69] may be a good choice.

In the following, we will closely present the event detec-

tion frameworks in autonomous driving.

3 Scene event detection in autonomous

driving

As said before, event definition is a difficult problem in

cognition science because of the dynamic and unpredictable

behaviors of different participants around the ego-vehicle.

After doing a literature review, the existing event detection

methods in driving consist of two categories: ego-vehicle

event and scene event. Ego-vehicle event detection[70, 71]

mainly collects records for its maneuvers, such as braking,

accelerating, turning, etc. Scene event aims to perceive

the actions or behaviors of other participants around the

ego-vehicle. In this paper, we concentrate on the second

category, i.e., scene event. We will elaborate it from vehi-

cle event and pedestrian event detection. That is because

pedestrian and vehicle manifestly have different event type

in the road and demonstrate entirely different behaviors.

3.1 Vehicle event detection

Lane change[72, 73], overtaking[74, 75] and rear-ending are

three mostly focused events in previous studies and the

highway scenarios are the concentration.

Among them, a German study reported a turn signal us-

age of 55% for lane changes on urban roads and 75% on

highways[76]. Similar results were obtained in a second ob-

servational study including almost 400 000 vehicles with a

turn signal usage of 71% on German highways[77]. For lane

change detection, Kasper et al.[78] defined 27 kinds of ma-

neuvers with a reasoning by an object-oriented Bayesian

networks. They exploited a lane-related coordinate system

together with individual occupancy schedule grids of all ve-

hicles and assigned all the vehicles coordinates within this

system. The coordinate system can efficiently model the

vehicle-lane and vehicle-vehicle relations. Yao et al.[79] pro-

posed an automatic method for lane-change trajectory seg-

mentation and constructed a trajectory dataset with more

than 1 000 samples from historical driving. They then mod-

eled the lane-change event by inferring the cross-correlating

spatial-temporal features of ego-vehicle w.r.t. other vehicles

on the trajectory′s end location and speed.

Additionally, Gindele et al.[80] decomposed the overtak-

ing event into five steps: following, acceleration phase, over-

take, sheer out and free ride and constructed a dynamic

Bayesian network to combine the longitudinal distance (the

distance of a vehicle to the next vehicle ahead), lateral dis-

tance (measurement of the displacement between the posi-

tion of a car and the centerline) and relative velocity (dif-

ference between their velocities of vehicles). Sivaraman et

al.[81] learned the trajectories of other vehicles around the

ego one. They firstly tracked the surrounding vehicles by

Kalman filter and then learned the primary trajectories by a

Gaussian mixture model zone selection and hidden Markov

process after a tracklet clustering. Satzoda and Trivedi[82]

proposed an appearance-based method for detecting both

overtaking and receding vehicles with respect to ego-vehicle.

They firstly detected the vehicles with Adaboost cascade

classifier and then tracked them to find the overtaking and

receding behavior. Specifically, this work selected the left

and right boundary regions to conduct a detection.

The above works are all based on the view in front of

the ego-vehicle. Recently, some works aim to achieve a

more comprehensive understanding of surrounding vehicles′

behaviors by taking the panorama vision of ego-vehicle into

account. For example, Kritoffersen et al.[83] equipped with

six on-board cameras and conducted detection and tracking
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on surrounding vehicles in a panorama vision. Then, the

tracked trajectories were projected into a ground plane for

a more intuitional inferring of relationships between them.

This work defined 14 kinds of events, such as overtaking

and cut-ins. They extended this work in [84] by making a

concise definition of event classes, i.e., five classes.

In addition to the highway scenarios, urban scene event

recently has gradually caught attentions. Different from

the highway scenarios, urban event mostly concentrates on

the intersection scene. That is because intersection has the

most complex traffic situation, involving a mixture of par-

ticipants, such as pedestrians, vehicles, cyclists, motorbikes,

etc. The studies in this domain adopt the public datasets,

such as KITTI, cityscapes, as evaluation benchmarks. For

instance, Khosroshahi et al.[85] built a 3-layer long short-

term memory (LSTM) to learn the temporal representa-

tion of the motion of surrounding vehicles and utilized the

LSTM architecture to classify 12 kinds of events based on

different driving directions and road directions. Ernst et

al.[86] exploited the velocity and acceleration of surround-

ing vehicles by a Ladar sensor. Then they incorporated

Markov model and fuzzy logic to infer the state of exam-

ined vehicles. They defined six kinds of scene events, i.e.,

accelerating, decelerating, straight driving, scram, lateral

move, start.

3.2 Pedestrian event detection

Compared with the vehicle event detection, pedestrian

event detection is more complicated. Pedestrian has higher

mobility, more uncertain movement, different gender and

ages and commonly cooperates with each other. Therefore,

pedestrian event owns diverse forms under different condi-

tions. Actually, the detection of pedestrian event mainly

focuses on unsafe behaviors or hazards, such as sudden

crossing, dart action and overtaking. These behaviors are

big threats for ego-vehicle. By the latest reports of traf-

fic fatalities9 released by National Highway Traffic Safety

Administration (NHTSA), about 90.4% pedestrian fatali-

ties occurred when the pedestrian steps in front of the ego-

vehicle and with a crossing behavior.

For reasoning the pedestrian event, the trajectory and

moving state (velocity, direction, orientation, etc.) are com-

monly used clues. For example, the work of [87] took the

pedestrian trajectory to map the traffic patterns and con-

structed a scene graph by clustering the trajectories and

involved a temporal move of the graph to judge the pedes-

trian behavior. Hariyono and Jo[88] recognized the pedes-

trian crossing event by checking the pedestrian pose, lat-

eral speed, motion direction and spatial layout of the en-

vironment. Mueid et al.[89] explored optical flow and his-

togram of gradient of pedestrian to classify eight kinds of

events, including walking, running, turn/return, tumbling,

etc. Quintero et al.[90] divided the trajectory of pedestrians

into walking, stopping, starting and standing behaviors and

9https://crashstats.nhtsa.dot.gov/Api/ Public/ViewPublication/
811888

classified them by a balanced Gaussian process dynamical

models. Ogawa et al.[91] aimed to detect the sudden ap-

pearance change of pedestrians before consecutive moving.

They computed the appearance change by Kullback-Leibler

divergence (KLD) between temporal frames and then de-

tected the non-periodic sequence by a smoothing method

which was conducted by summing up the previous KLD

values of previous frames. Chan et al.[92] directly modeled

the interaction of various participants with a recurrent neu-

ral network (RNN) and detected collision. The work of [93]

addressed the occlusion problem of participants by using

RGB-D data. They segmented the participants into differ-

ent layers and determined the state of overtaking by the

variation of bounding boxes of targets. In addition to com-

mon dangerous behavior of pedestrian, the work[94] recog-

nized the undertaking evasive actions based on permutation

entropy which can identify the deviations from the normal

free walking.

3.3 Discussion

Based on the above literature review, we find that the

studies mainly focused on the events which are unsafe and

can be well-defined in autonomous driving. Of course, these

events manifestly cannot include all of the scene events

that may be encountered. In the meantime, existing works

aim to tackle one kind of participants in scene event detec-

tion. In fact, the road scene involves different participants

at the same time. For example, in driving, road-crossing

has direct influence on the behavior of vehicles to give the

way to pedestrians. Therefore, an accident always involves

different participants. In addition, existing works handle

the same events under different names and definitions in

their works, while have the same name for different kinds

of events. It is urgent to construct a unifying framework

for event type definition and naming. Besides, the datasets

in each work are not publicly available, which cannot fairly

reflect the performance of the methods.

4 Intention prediction in autonomous

driving

In autonomous driving, the purpose of the aforemen-

tioned scene representation and scene event detection

is to provide an accurate reasoning clue for future

driving, i.e., to make a precise movement prediction

of surrounding participants in the future, so that the

autonomous vehicle can smoothly pass the observed scene

and reach the destination as fast as possible. Actually,

for future movement prediction, it has a more exact

description: intention prediction. One aspect of it is

to predict the future movement of participants as long

as possible, so as to spare enough time for comfort-

able maneuver. Another aspect is to discover the moving
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patterns of participants based on historical observation. Ac-

cording to different time spans, we classify the intention

prediction as short-term intention prediction and long-term

prediction.

4.1 Short-term intention prediction

Short-term intention prediction researches mainly take

the demonstrated transient movement of participants to es-

timate the behavior in next milliseconds or seconds. With

effective detection, the optical flow, contour variation, gait

of pedestrians are commonly optional to represent the ap-

pearance of transient movement, followed by efficient clas-

sification and prolongation of movement to predict short-

term future. For short-term intention prediction, the inten-

tion categories of pedestrian, cyclists[95] and vehicles are

different. Crossing, starting, stopping, running are the

pedestrian′s common manifestation patterns, while lane-

change, overtaking, starting, stopping, turning and ap-

proaching are the intentions of vehicles. Fig. 6 demonstrates

some typical vehicle intentions and pedestrian crossing in-

tention in urban scenes.

To predict the intention of pedestrians, common practice

is to collect the appearance variation, velocity variation,

orientation variation to represent the transient movement

and feeds the features into a reasoning framework to es-

timate future movement. For example, Fugger et al.[98]

novelly took the average velocity, average acceleration of

four steps of human into account to estimate the intention.

Schneider and Gavrila[99] defined four kinds of moving pat-

terns, including crossing, stopping, turning and re-starting

and estimated the short-term walking, stopping and turning

intention by a recursive Bayesian filters. Goldhammer et

al.[100, 101] predicted the displacement between the starting

and heeling off the ground. Incorporating with the acceler-

ation, timestamp range of accelerating and average velocity,

they achieved a trajectory prediction in next three seconds.

Keller and Gavrila[102]adopted the optical flow feature to

represent the transient state of pedestrian and linked the

states with a state trajectory which was prolonged to make

an estimation. Kohler et al.[103] exploited the contour vari-

ation to express the movement by a motion contour image

based on HOG-like descriptor. Then the stopping and walk-

ing intention was predicted by a support vector machine.

Kooij et al.[104] explored the movement rules of head by a

dynamic Bayesian networks. Quintero et al.[90] predicted

the walking intention in next one second by estimating the

movement of the parts of body with the balanced Gaussian

process dynamical models. In order to predict the inten-

tion of pedestrians in nighttime, the work[105] captured the

scene with an infrared camera and employed the dynamic

Fig. 6 Some typical (a) vehicle intentions and (b) pedestrian crossing intentions in urban scene. These figures are adapted from [96]

and [97], respectively.
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fuzzy automata (DFA) to overcome prediction uncertainty.

In their work, four kinds of intentions were focused, in-

cluding, standing on sidewalk, walking along the sidewalk,

walking-crossing and running-crossing.

For vehicle intention prediction, the instantaneous ve-

locity, acceleration, turning move are commonly used

clues[106, 107]. For example, the vehicle posture state and

velocity of front vehicle were exploited by the work of [108],

with a hidden Markov model for reasoning the state tran-

sition. In this work, the starting, stopping and lane change

intentions were focused. Hou et al.[109] predicted the afflux

intention of vehicles by incorporating the Bayesian classi-

fier with a decision trees. In this approach, the velocity

difference between the ego-vehicle and other surrounding

vehicles, and the distance between them were employed to

represent the transient information. A graphical modeling

and unsupervised learning techniques are used to construct

a model for inferring the intention of drivers in surrounding

vehicles[110]. This work focused on the urban scene and syn-

thesized a hidden Markov model with the aid of unscented

Kalman filtering. The expectation maximization technique

is employed to predict the lane change intention of vehicles.

4.2 Long-term intention prediction

Different from the short-term intention prediction, long-

term intention prediction can be exactly understood as path

planning. In other words, long-term intention prediction

takes the historical observed trajectory with incorporated

context information so as to give a possible driving plan-

ning.

In this category, Bayesian filter is a customary reasoning

framework. Typical ones are Kalman filter (KF), extended

Kalman filter (EKF), multiple model filter (MMF) and par-

ticle filter (PF). For instance, Gu et al.[111] took the histor-

ical trajectory of pedestrian as a reference and used PF

to estimate the future state. The estimated moving state

was further adopted to compute the passable possibility for

ego-vehicle. Additionally, the first-order EKF was taken

into the trajectory estimation of surrounding vehicles, with

the help of time to collision (TTC) and minimum distance

between vehicles[106]. The work[112] employed KF to pre-

dict the trajectory of other vehicles and plan the path for

ego-vehicle with linear-quadratic Gaussian.

In addition to the Bayesian filters, the context layout and

topology information aforementioned are effectively used

in this domain. Specifically, the transformation of coor-

dinate systems beyond the global coordinates is popular.

For example, Cartesian coordinates[113, 114] treated the ego-

vehicle as the origin and can more intuitionally compute the

relative distance, velocity and trajectory of other vehicles.

Curvilinear coordinates[115] can transform the driving path

into an orthogonal space and generate a more convenient

calculation. Under the coordinate systems, some works pro-

jected the observed scene into topology space. For example,

Gu et al.[113] posed the trajectory of other vehicles into dif-

ferent topology space, such as overtaking and car-following.

Then, they projected the observed trajectory into differ-

ent topology space and make a prediction of future moving.

Pool et al.[116] exploited the local road topology to obtain

better predictive distributions for cyclists, where the track-

lets of the cyclists were extracted and spatially aligned to

the road curves and crossings. Then the KF was used to

make a prediction. Evestedt et al.[117] used the intelligent

driver model (IDM) to estimate the trajectory of vehicles in

T-type intersection. Curvilinear coordinates was employed

by Jo et al.[115] for a path planning in a curved road. Fig. 7

gives a geometry demonstration on different coordinate sys-

tems.

Fig. 7 A geometry demonstration on different coordinate sys-

tems (This figure is adapted from [115])

4.3 Discussion

Intention prediction aims to provide an acceptable

path and information for safe and comfortable future au-

tonomous driving. Existing works on intention prediction

either focus on the locally short-term prediction or globally

long-term prediction. The acceptable time span for driving

in local mode is limited, while global mode loses the lo-

cal intention information. It is promising to combine local

mode with global mode. In the meanwhile, the local mode

can be provided by the scene context layout with adequate

geometrical information and topology rules can provide a

clue for global planing. However, the information was not

applied to the previous works. In addition, as similar to the

scene event detection, there is no unified metric and dataset

to evaluate performance of intention prediction.

5 End-to-end reasoning

The aforementioned formulations for event reasoning un-

dergo multiple stages and their ultimate goal is to realize

fully-automatic driving. With the aid of a large amount of

driving data acquisition, some studies focus on the direct

reasoning by deep learning architectures[13, 14, 118]. These

works mainly focus on constructing data-driven driving

model for automatic driving planning and steering wheel

control.

Actually, these formulations bypass the complicated

modeling for the aforementioned reasoning frameworks. For
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example, Xu et al.[13] proposed novel FCN-LSTM architec-

ture to predict a distribution over future vehicle ego motion

from instantaneous monocular camera observations, and

to predict previous vehicle state from large scale crowd-

sourced video data. They learn the countermeasure from

10 000 hours of driving dash-cam video streams at differ-

ent places around the world, which consists of much human

driving experience. Eraqi et al.[118] proposed a convolu-

tional long short-term memory recurrent neural network

(C-LSTM) that earned both visual and dynamic tempo-

ral dependencies of driving, which was further introduced

to solving the steering angle regression problem for steering

decision. Caltagirone et al.[119] carried out the perception

and path generation from real-world driving sequences si-

multaneously by developing a method to generate driving

paths that integrates Lidar point clouds, GPS-IMU infor-

mation and Google driving together through fully convolu-

tional neural network directions.

By a large amount of data, end-to-end architectures give

a direct driving strategies. They comprehend the traffic

scene automatically by learning the patterns contained in

the large-scale data. These formulations rely on the quality

of training data and labeling labors. Certainly, we can see

the progress on the scene understanding by these end-to-

end architectures. However, the process of understanding

is difficult to interpret. For example, the true reason of

the action and the underlying reason for the progress is

still unverifiable, whereas it has been verified at the afore-

mentioned stages. In addition, the current end-to-end ar-

chitectures are not good enough for the deep traffic scene

understanding. The situations in a certain traffic scene vary

in many ways because of the dynamic participants.

6 Evaluation datasets and metrics

To validate the performance of every method for each

task aforementioned, it is indispensable to compare the per-

formance of different approaches. Dataset and evaluation

metrics are the two most important elements to be firstly

examined. In the following part, we will present the dataset

and corresponding evaluation metrics of each task in au-

tonomous driving.

6.1 Evaluation on scene representation

As mentioned above, we introduced traffic saliency, con-

text layout and topology rules for scene representation. The

corresponding evaluation setups are presented below.

6.1.1 Evaluating traffic saliency

Dataset. Traffic saliency attracts the attention of re-

searchers in recent years. Actually, it is difficult to ac-

quire the ground-truth of traffic saliency in general driv-

ing situations. Based on the investigation, we found

that DR(eye)VE video dataset10 may be useful for traf-

fic saliency evaluation. That is because the car-mounted

view, drivers′ point of view, gaze map overlay and geo-

reference were captured when constructing the dataset. Be-

sides, the videos were recorded in different places, includ-

ing downtown, countryside and highway scenarios and cov-

ered a broad range of traffic conditions from free traffic to

crowded situations. Fig. 8 demonstrates an exemplar frame

of DR(eye)VE video dataset. This dataset was released re-

cently and adopted in [47].

Fig. 8 An exemplar frame from DR(eye)VE video dataset. From left to right, from up to bottom: car-mounted view, driver′s point

of view, gaze map overlay and geo-referenced course (This figure is adapted from [46])

10http://imagelab.ing.unimore.it/dreyeve
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Metrics. For the performance evaluation of traffic

saliency, the metrics is the same as the saliency detection

domain for general images. Commonly, there are eight met-

rics usually adopted[120] (6 similarity metrics and 2 dissim-

ilarity metrics). They are area under receiver operating

characteristic (ROC) curve (AUC), shuffled AUC (sAUC),

normalized scanpath daliency (NSS), Pearson′s correlation

coefficient (CC), earth mover′s distance (EMD), similar-

ity or histogram intersection (SIM), Kullback-Leibler di-

vergence (KL) and information gain (IG).

AUC is widely used for saliency map evaluating. The

saliency map is treated as a binary classifier of fixations at

different thresholds, where the ROC curve is computed by

measuring the true positive rates and false positive rates

under the binary classifier.

SAUC aims to overcome the center bias in AUC compu-

tation and it compensates for the central fixation bias[121].

Normalized scanpath saliency (NSS) was introduced as

a simple correspondence measure between saliency maps

and ground truth, and computed as the average normalized

saliency at fixated locations[122] . The calculating procedure

is

NSS(A,Bb) =
1

N

∑

i

Āi×Bb
i (1)

where A is the saliency map, Bb denotes a binary map of

fixation locations, N =
∑
i

Bb
i , Ā = A−μ(A)

σ(A)
, i indexes the

i-th pixel and N represents the number of fixated pixels.

IG was recently introduced by Kümmerer et al.[123] which

measured the information gain of a saliency map. Given a

saliency map A, the binary map of fixation locations Bb

and baseline C, the information gain is calculated by

IG(A,Bb) =
1

N

∑

i

Bb
i [log2(ε + Ai) − log2(ε + Ci)] (2)

where ε is a very small constant for avoiding −∞.

Similarity or histogram intersection (SIM) measures

the similarity between two distributions, viewed as

histograms[124] . Given a saliency map A and a continuous

fixation map Bc, the SIM is computed as

SIM(A,Bc) =
∑

i

min(Ai, B
c
i ) (3)

where
∑
i

Ai =
∑
i

Bc
i = 1.

CC treats the saliency and fixation maps, A and Bc, as

random variables and measures the linear relationship be-

tween them[125]. CC is computed as

CC(A,Bc) =
σ(A,Bc)

σ(A) × σ(Bc)
(4)

where σ(A,Bc) denotes the covariance of A and Bc.

Kullback-Leibler divergence (KL) evaluates the loss of in-

formation when distribution saliency map A approximates

the distribution of Bc and is calculated by

KL(A,Bc) =
∑

i

Bc
i log

(
ε +

Bc
i

ε + Ai

)
. (5)

EMD measures the spatial distance between the saliency

map A and Bc over a region by computing the minimum

cost of morphing from one distribution into the other. The

EMD has many variants. Detailed content can be seen from

[126, 127].

All of these metrics aim to evaluate the similarity be-

tween human fixation and obtained saliency maps. Choos-

ing appropriate evaluation metrics remains as an open re-

search question because this choice depends on how saliency

and fixation data are defined and represented. The inherent

ambiguity leads to different choices for evaluation.

Fig. 9 The inferring results of topology rules by the tracklets. The left-bottom topology rules bounded by red box are the inferred

results and the green box in the right-bottom is the ground-truth (This figure is adapted from [65]).
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6.1.2 Evaluating context layout

Dataset. To evaluate the performance of context lay-

out learning for autonomous driving, the frequently selected

dataset is KITTI which provides color, gray-scale images,

3D laser scanning and geo-inference. The context layout

information is represented by geometry clues, such as the

intersection center, road region and orientation of street

or road. In addition to KITTI, most related works col-

lected the datasets by themselves and did not open them.

Therefore, for context layout evaluation, KITTI is the only

publicly available one.

Metrics. As for performance comparison, the absolute

error between the truly road orientation or intersection lo-

cation and the predicted ones are commonly adopted to

compare the line or point based clues[61]. In terms of the

road region, overlapping rate is usually used, which is com-

puted as[61]:

Overlap =
BT ∩ BP

BT ∪ BP
× 100% (6)

where BT and BP are the binary road mask of ground-

truth and predicted one, respectively.
⋂

and
⋃

are the

intersection and union operator, respectively. Actually, the

metrics here are inspired by the result representation struc-

ture, such as point, line, or plane forms for representing

layout geometry.

6.1.3 Evaluating topology rules

Dataset. In terms of measuring topology rules, the pub-

licly available dataset is also KITTI released by Zhang et

al.[65]. They labeled the topology rules as many traffic pat-

terns, including turning left, straight driving, etc. Fig. 9

demonstrates the traffic patterns labeled in [65].

Metrics. For evaluating the performance of topology

learning, confusion matrix is a specific table layout that al-

lows visualization of the performance of an algorithm eval-

uation, which is commonly utilized in supervised learning.

Each row of the confusion matrix represents the instances

in a predicted class, while each column represents the in-

stances in an actual class and vice versa. Corresponding to

the topology rule, the “class” is the pattern. Within confu-

sion matrix, researchers can derive many metrics for eval-

uation, such as precision, recall, true positive rate (TPR),

false positive rate (FPR), etc. As for the confusion matrix,

readers can refer to [128] and the wikipage website11.

6.2 Evaluation on event detection

Dataset. To evaluate the event detection in au-

tonomous driving, there is only one publicly available

dataset for pedestrian crossing event detection called Daim-

ler dataset[99], which was collected by Schneider and

Gavrila. This dataset contains 68 pedestrian sequences col-

lected from a stationary and moving vehicles. Four different

pedestrian motion types are considered, including crossing,

stopping, starting to walk and bending-in. There is only

one pedestrian without occlusion in each sequence. Fig. 10

demonstrates two frames in Daimler dataset.

Fig. 10 Two examples in Daimler dataset for pedestrian cross-

ing detection (This figure is adapted from Daimler dataset[65]).

Metrics. As for the evaluating metrics, owning to that

different works detect the event at distinct levels, the met-

rics are different in all of the works. For example, the work

in [80, 84] models the event with many trajectories and com-

putes the detection error by calculating the average root

mean square error (RMSE), which is computed by

RMSE =
1

n

√√√√
n∑

i=1

(ŷi − yi)
2 (7)

where ŷ and y are the attribute value of the estimated one

and ground-truth, respectively. The attribute value may in-

clude velocity, position and gear angle of vehicles. Addition-

ally, some works defined such kind of event, like overtaking,

crossing, etc. Therefore, similar to the evaluating methods

for topology categories mentioned above, confusion matrix

is also utilized in this domain.

6.3 Evaluation on intention prediction

In terms of the evaluation of intention prediction, there

is no publicly available dataset till now. Therefore, in this

subsection, we only review the evaluation metrics of this

task. For intention prediction, in addition to the same

evaluating metrics as the event detection for the predic-

tion of certain intention class, such as crossing, overtaking,

etc., TTC is another important index for safety evaluation,

which is used to examine whether an interaction with a cer-

tain observing vehicle could be predicted by the ego one. In

the work of [79], they compute the TTC as

TTCOV,EGO
0 =

(
sOV
0 − sEGO

0

)

(ṡOV
0 − ṡEGO

0 )
(8)

11https://en.wikipedia.org/wiki/Confusion-matrix



J. R. Xue et al. / A Survey of Scene Understanding by Event Reasoning in Autonomous Driving 261

where s0 and ṡ0 denote the location and speed of the vehi-

cles in initial time. It is assumed that we have obtained the

location sOV
0 of the observed vehicles (OV ) and we know

the location sEGO
0 of ego vehicle (EGO). Meanwhile, the

speed of OV is estimated as ṡOV
0 . We can compute TTC

by (8).

6.4 Discussion

The publicly available benchmarks for autonomous driv-

ing, such as KITTI and Cityscapes, concentrate on the low-

level vision tasks. There is no large-scale publicly available

benchmark for deeper scene understanding. Actually, it is

just like there is no strong power to propel deeper under-

standing. To construct this kind of benchmark with an

acceptance and deeper understanding of scene, we should

clarify two problems: 1) What should be annotated? 2)

How to annotate?

What should be annotated? Low-level vision tasks which

clear annotation goal, such as annotating pedestrian, vehi-

cles, cyclists, road, etc. Differently, in deeper understand-

ing of scene, the dynamics, logicality, causality and other

high-level semantic relationship of participants in the traffic

scene may be the focuses. Of course, these high-level rela-

tionships should be built on certain participants. Therefore,

the construction of benchmark should have a multi-level an-

notation, including low-level participants annotation, mid-

level trajectory annotation and high-level relationship anno-

tation. As for low-level participant annotation, what kind

of information should be contained: color, distance to ego

vehicle, size, or semantic class? For deeper understanding

of scene, it is necessary to contain attributes of participants

as much as possible.

How to annotate? Based on the exhaustive efforts on

the low-level vision tasks and mid-level trajectory annota-

tion, low-level and mid-level annotation can be achieved

with the aid of the state-of-the art automatic methods. For

inevitably generated errors, it can be corrected by humans.

In other words, hybrid human-machine annotation may be

the mode for low-level participant annotation. For multiple

attribute annotation, the collaboration of multiple sensors

might be realized by the road, such as KITTI[19]. How-

ever, calibration of different sensors should be taken into

account, but it is different from KITTI which has only six

video sequences. Much larger data should be collected and

labeled in various driving environments. The high-level re-

lationship annotation is the most important component for

deeper scene understanding. Thus, we think event and in-

tention are two stages and manual annotation may be the

only way to obtain an accurate labeling. These insights are

all need further study.

7 Concluding remarks

In this paper, we comprehensively reviewed the works on

the scene understanding under an event reasoning frame-

work. Specifically, we presented the contents from three

stages: scene representation, scene event detection and in-

tention prediction. At each stage, we firstly gave a tax-

onomy to classify each approach and then conclusively re-

viewed relevant literatures as well as the state-of-the-arts

methods. Besides, we discussed open problems at each

stage of scene event reasoning and tried our best to provide

a possible solution. We hope that this survey can encour-

age new research and insight for this field and provide basic

knowledge for beginners.
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