• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Actively-controlled Beds for Ambulances

Actively-controlled Beds for Ambulances

  • 摘要: During transportation by ambulance, a patient is exposed to inertial acceleration when an ambulance decelerates or turns a corner Such acceleration often gives a patient physical stress such as blood pressure variation or body sway, which causes strong pain, feeling of discomfort or sometimes critical damage for seriously injured persons To reduce this undesirable effect of the acceleration, the authors developed the actively-controlled bed (ACB) which controls the posture of a stretcher in real time to reduce foot-to-head and lateral acceleration acting on a supine person This paper describes development of the ACB, including control system design and performance evaluation The control system is designed by Zakian s framework, which comprises the principle of matching and the method of inequalities, so that the design specifications on the tracking error and the motor torque are satisfied From the results of driving experiments and simulation, it is estimated that the ACB can reduce the acceleration acting on a patient by 65% in the foot-to-head direction and by 75% in the lateral direction.

     

    Abstract: During transportation by ambulance, a patient is exposed to inertial acceleration when an ambulance decelerates or turns a corner Such acceleration often gives a patient physical stress such as blood pressure variation or body sway, which causes strong pain, feeling of discomfort or sometimes critical damage for seriously injured persons To reduce this undesirable effect of the acceleration, the authors developed the actively-controlled bed (ACB) which controls the posture of a stretcher in real time to reduce foot-to-head and lateral acceleration acting on a supine person This paper describes development of the ACB, including control system design and performance evaluation The control system is designed by Zakian s framework, which comprises the principle of matching and the method of inequalities, so that the design specifications on the tracking error and the motor torque are satisfied From the results of driving experiments and simulation, it is estimated that the ACB can reduce the acceleration acting on a patient by 65% in the foot-to-head direction and by 75% in the lateral direction.

     

/

返回文章
返回